68 resultados para low dimensional structures


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Molecular self-organization has the potential to serve as an efficient and versatile tool for the spontaneous creation of low-dimensional nanostructures on surfaces. We demonstrate how the subtle balance between intermolecular interactions and molecule-surface interactions can be altered by modifying the environment or through manipulation by means of the tip in a scanning tunnelling microscope (STM) at room temperature. We show how this leads to the distinctive ordering and disordering of a triangular nanographene molecule, the trizigzag-hexa-peri-hexabenzocoronenes-phenyl-6 (trizigzagHBC-Ph6), on two different surfaces: graphite and Au(111). The assembly of submonolayer films on graphite reveals a sixfold packing symmetry under UHV conditions, whereas at the graphite-phenyloctane interface, they reorganize into a fourfold packing symmetry, mediated by the solvent molecules. On Au(111) under UHV conditions in the multilayer films we investigated, although disorder prevails with the molecules being randomly distributed, their packing behaviour can be altered by the scanning motion of the tip. The asymmetric diode-like current-voltage characteristics of the molecules are retained when deposited on both substrates. This paper highlights the importance of the surrounding medium and any external stimulus in influencing the molecular organization process, and offers a unique approach for controlling the assembly of molecules at a desired location on a substrate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A mixture of Gaussians fit to a single curved or heavy-tailed cluster will report that the data contains many clusters. To produce more appropriate clusterings, we introduce a model which warps a latent mixture of Gaussians to produce nonparametric cluster shapes. The possibly low-dimensional latent mixture model allows us to summarize the properties of the high-dimensional clusters (or density manifolds) describing the data. The number of manifolds, as well as the shape and dimension of each manifold is automatically inferred. We derive a simple inference scheme for this model which analytically integrates out both the mixture parameters and the warping function. We show that our model is effective for density estimation, performs better than infinite Gaussian mixture models at recovering the true number of clusters, and produces interpretable summaries of high-dimensional datasets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ultrafast lasers play an increasingly important role in many applications. Nanotubes and graphene have emerged as promising novel saturable absorbers for passive mode-locking. Here, we review recent progress on the exploitation of these two carbon nanomaterials in ultrafast photonics. © 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We introduce a Gaussian process model of functions which are additive. An additive function is one which decomposes into a sum of low-dimensional functions, each depending on only a subset of the input variables. Additive GPs generalize both Generalized Additive Models, and the standard GP models which use squared-exponential kernels. Hyperparameter learning in this model can be seen as Bayesian Hierarchical Kernel Learning (HKL). We introduce an expressive but tractable parameterization of the kernel function, which allows efficient evaluation of all input interaction terms, whose number is exponential in the input dimension. The additional structure discoverable by this model results in increased interpretability, as well as state-of-the-art predictive power in regression tasks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The paper presents a new copula based method for measuring dependence between random variables. Our approach extends the Maximum Mean Discrepancy to the copula of the joint distribution. We prove that this approach has several advantageous properties. Similarly to Shannon mutual information, the proposed dependence measure is invariant to any strictly increasing transformation of the marginal variables. This is important in many applications, for example in feature selection. The estimator is consistent, robust to outliers, and uses rank statistics only. We derive upper bounds on the convergence rate and propose independence tests too. We illustrate the theoretical contributions through a series of experiments in feature selection and low-dimensional embedding of distributions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sub-picosecond tunable ultrafast lasers are important tools for many applications. Here we present an ultrafast tunable fiber laser mode-locked by a nanotube based saturable absorber. The laser outputs ∼500fs pulses over a 33 nm range at 1.5μm. This outperforms the current achievable pulse duration from tunable nanotube mode-locked lasers. © 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, we present some approaches recently developed for enhancing light emission from Er-based materials and devices. We have investigated the luminescence quenching processes limiting quantum efficiency in light-emitting devices based on Si nanoclusters (Si nc) or Er-doped Si nc. It is found that carrier injection, while needed to excite Si nc or Er ions through electron-hole recombination, at the same time produces an efficient non-radiative Auger de-excitation with trapped carriers. A strong light confinement and enhancement of Er emission at 1.54 μm in planar silicon-on-insulator waveguides containing a thin layer (slot) of SiO2 with Er-doped Si nc at the center of the Si core has been obtained. By measuring the guided photoluminescence from the cleaved edge of the sample, we have observed a more than fivefold enhancement of emission for the transverse magnetic mode over the transverse electric one at room temperature. Slot waveguides have also been integrated with a photonic crystal (PhC), consisting of a triangular lattice of holes. An enhancement by more than two orders of magnitude of the Er near-normal emission is observed when the transition is in resonance with an appropriate mode of the PhC slab. Finally, in order to increase the concentration of excitable Er ions, a completely different approach, based on Er disilicate thin films, has been explored. Under proper annealing conditions crystalline and chemically stable Er2Si2O7 films are obtained; these films exhibit a strong luminescence at 1.54 μm owing to the efficient reduction of the defect density. © 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper addresses the design of mobile sensor networks for optimal data collection. The development is strongly motivated by the application to adaptive ocean sampling for an autonomous ocean observing and prediction system. A performance metric, used to derive optimal paths for the network of mobile sensors, defines the optimal data set as one which minimizes error in a model estimate of the sampled field. Feedback control laws are presented that stably coordinate sensors on structured tracks that have been optimized over a minimal set of parameters. Optimal, closed-loop solutions are computed in a number of low-dimensional cases to illustrate the methodology. Robustness of the performance to the influence of a steady flow field on relatively slow-moving mobile sensors is also explored © 2006 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ability of hydrodynamically self-excited jets to lock into strong external forcing is well known. Their dynamics before lock-in and the specific bifurcations through which they lock in, however, are less well known. In this experimental study, we acoustically force a low-density jet around its natural global frequency. We examine its response leading up to lock-in and compare this to that of a forced van der Pol oscillator. We find that, when forced at increasing amplitudes, the jet undergoes a sequence of two nonlinear transitions: (i) from periodicity to T{double-struck}2 quasiperiodicity via a torus-birth bifurcation; and then (ii) from T{double-struck}2 quasiperiodicity to 1:1 lock-in via either a saddle-node bifurcation with frequency pulling, if the forcing and natural frequencies are close together, or a torus-death bifurcation without frequency pulling, but with a gradual suppression of the natural mode, if the two frequencies are far apart. We also find that the jet locks in most readily when forced close to its natural frequency, but that the details contain two asymmetries: the jet (i) locks in more readily and (ii) oscillates more strongly when it is forced below its natural frequency than when it is forced above it. Except for the second asymmetry, all of these transitions, bifurcations and dynamics are accurately reproduced by the forced van der Pol oscillator. This shows that this complex (infinite-dimensional) forced self-excited jet can be modelled reasonably well as a simple (three-dimensional) forced self-excited oscillator. This result adds to the growing evidence that open self-excited flows behave essentially like low-dimensional nonlinear dynamical systems. It also strengthens the universality of such flows, raising the possibility that more of them, including some industrially relevant flames, can be similarly modelled. © 2013 Cambridge University Press.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A partially observable Markov decision process has been proposed as a dialogue model that enables robustness to speech recognition errors and automatic policy optimisation using reinforcement learning (RL). However, conventional RL algorithms require a very large number of dialogues, necessitating a user simulator. Recently, Gaussian processes have been shown to substantially speed up the optimisation, making it possible to learn directly from interaction with human users. However, early studies have been limited to very low dimensional spaces and the learning has exhibited convergence problems. Here we investigate learning from human interaction using the Bayesian Update of Dialogue State system. This dynamic Bayesian network based system has an optimisation space covering more than one hundred features, allowing a wide range of behaviours to be learned. Using an improved policy model and a more robust reward function, we show that stable learning can be achieved that significantly outperforms a simulator trained policy. © 2013 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

© 2015 John P. Cunningham and Zoubin Ghahramani. Linear dimensionality reduction methods are a cornerstone of analyzing high dimensional data, due to their simple geometric interpretations and typically attractive computational properties. These methods capture many data features of interest, such as covariance, dynamical structure, correlation between data sets, input-output relationships, and margin between data classes. Methods have been developed with a variety of names and motivations in many fields, and perhaps as a result the connections between all these methods have not been highlighted. Here we survey methods from this disparate literature as optimization programs over matrix manifolds. We discuss principal component analysis, factor analysis, linear multidimensional scaling, Fisher's linear discriminant analysis, canonical correlations analysis, maximum autocorrelation factors, slow feature analysis, sufficient dimensionality reduction, undercomplete independent component analysis, linear regression, distance metric learning, and more. This optimization framework gives insight to some rarely discussed shortcomings of well-known methods, such as the suboptimality of certain eigenvector solutions. Modern techniques for optimization over matrix manifolds enable a generic linear dimensionality reduction solver, which accepts as input data and an objective to be optimized, and returns, as output, an optimal low-dimensional projection of the data. This simple optimization framework further allows straightforward generalizations and novel variants of classical methods, which we demonstrate here by creating an orthogonal-projection canonical correlations analysis. More broadly, this survey and generic solver suggest that linear dimensionality reduction can move toward becoming a blackbox, objective-agnostic numerical technology.