63 resultados para intestinal absorption
Resumo:
To further enhance the sound absorption of metal foams via combining the high sound absorption and good heat conductivity of the cellular foam metals, the use and acoustic modeling of these materials are reviewed. The predictions made by three viscous models developed by the authors for the propagation of sound through open-cell metal foams are compared with an experiment both for the metal foams and for the polymer substrates used to manufacture the foam. All models are valid in the limit of low Reynold's number which is valid for the typical cell dimensions found in metal foams provided the amplitude of the waves is below 160 dB. The first model considers the drag experienced by acoustic waves as they propagate passing rigid cylinders parallel to their axes, the second considers the propagation normal to their axes, and the third considers the propagation passing the spherical joints. All three are combined together to give a general model of the acoustic behavior of the foams. In particular, the sound absorption is found to be significant and well predicted by the combined model. In addition, a post-processing technique is described for the experiment used to extract the fundamental wave propagation characteristics of the material.
Resumo:
We report the first measurement of two-photon absorption (TPA) and self-phase modulation in an InGaAsP/InP multi-quantum-well waveguide. The TPA coefficient, β2, was found to be 60±10 cm/GW at 1.55 μm. Despite operating at 200 nm from the band edge, self-phase modulation as high as 8±2 rad was observed for 30-ps optical pulses at 3.8-W peak input power. A theoretical calculation indicates that this enhanced phase modulation is primarily due to bandfilling in the quantum wells and the free-carrier plasma effect.
Resumo:
For the first time, lasers have been used to induce a fast all-optical nonresonant nonlinearity at wavelengths well beyond the band edge in a GaAs/GaAlAs multiquantum well waveguide. Using a Q-switched diode laser, which gave optical pulses of 3.5 ps duration and 7 W peak power, an intensity-dependent transmission was recorded that was consistent with the presence of two photon absorption in the waveguide. The measured two photon absorption coefficient was 11 ± 2cm/GW.
Resumo:
To control combustion instabilities occurring in LPP gas turbine combustors, several active and passive systems have been developed in recent years. The combustion chamber cooling geometry has the potential to influence instability feedback loops by absorbing acoustical energy inside the combustor. The design of the cooling liner and the geometry of the cooling plenum and the cooling air flow rate have a significant influence on the absorption characteristics of the system. This paper presents the results of a cold flow study which was carried out in the course of a comprehensive study on the influence of the cooling geometry on combustor thermoacoustics. Absorption characteristics of three different cooling liner geometries and non-perforated plates were determined over a frequency range from 50 Hz to 600 Hz for different cooling flow rates and different cooling plenum volumes. The experimental results compared well with results from a low order thermoacoustic network model. The acoustic energy absorption spectrum of a cooling liner with 90°-hole configuration was found to be strongly dependent on cooling flow rate and cooling plenum volume, whereas the absorption spectrum of cooling liners with 25°-holes were found to be strongly dependent on the cooling plenum volume, but less dependent on the cooling air flow rate. All cooling liner setups with perforations were capable of increased acoustic absorption over a broad band of frequencies compared to the case of non-perforated combustor walls. © 2010 by Johannes Schmidt.
Resumo:
The effect of KI encapsulation in narrow (HiPCO) single-walled carbon nanotubes is studied via Raman spectroscopy and optical absorption. The analysis of the data explores the interplay between strain and structural modifications, bond-length changes, charge transfer, and electronic density of states. KI encapsulation appears to be consistent with both charge transfer and strain that shrink both the C-C bonds and the overall nanotube along the axial direction. The charge transfer in larger semiconducting nanotubes is low and comparable with some cases of electrochemical doping, while optical transitions between pairs of singularities of the density of states are quenched for narrow metallic nanotubes. Stronger changes in the density of states occur in some energy ranges and are attributed to polarization van der Waals interactions caused by the ionic encapsulate. Unlike doping with other species, such as atoms and small molecules, encapsulation of inorganic compounds via the molten-phase route provides stable effects due to maximal occupation of the nanotube inner space.
Resumo:
Dynamic nonlinear absorption of composite-type single-wall carbon nanotube saturable absorbers is characterized using both femtosecond and picosecond pump pulses. Results are compared with numerical simulations based on two commonly used saturable absorber models. © 2010 Optical Society of America.