65 resultados para interference patterns


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a controllable formation process of wave-like patterns in thermally unstable surface-capped polymer films on a rigid substrate. Self-ordered wave-like structures over a large area can be created by applying a small lateral tension to the film, whereupon it becomes unstable. A clear mode selection process which includes creation, decay and interference between coexisting waves at different annealing conditions has been observed, which makes it possible to restrain the patterns which are formed finally. Our results provide a clear and new evidence of spinodal behaviour in such a film due to thermal instability. Furthermore, we show that the well-controlled patterns generated in such a process can be used to fabricate nanostructures for various applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work explored the use of industrial drop-on-demand inkjet printing for masking steel surfaces on engineering components, followed by chemical etching, to produce patterned surfaces. A solvent-based ink was printed on to mild steel samples and the influences of substrate topography and substrate temperature were investigated. Contact angle measurements were used to assess wettability. Regular patterns of circular spots (∼60 /on diameter) and more complex mask patterns were printed. Variation of the substrate temperature had negligible effect on the final size of the printed drops or on the resolution achieved. Colored optical interference fringes were observed on the dried ink deposits and correlated with film thickness measurements by whitelight interferometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a simple technique for the patterning of glia and neurons. The integration of neuronal patterning to Multi-Electrode Arrays (MEAs), planar patch clamp and silicon based 'lab on a chip' technologies necessitates the development of a microfabrication-compatible method, which will be reliable and easy to implement. In this study a highly consistent, straightforward and cost effective cell patterning scheme has been developed. It is based on two common ingredients: the polymer parylene-C and horse serum. Parylene-C is deposited and photo-lithographically patterned on silicon oxide (SiO(2)) surfaces. Subsequently, the patterns are activated via immersion in horse serum. Compared to non-activated controls, cells on the treated samples exhibited a significantly higher conformity to underlying parylene stripes. The immersion time of the patterns was reduced from 24 to 3h without compromising the technique. X-ray photoelectron spectroscopy (XPS) analysis of parylene and SiO(2) surfaces before and after immersion in horse serum and gel based eluant analysis suggests that the quantity and conformation of proteins on the parylene and SiO(2) substrates might be responsible for inducing glial and neuronal patterning.