50 resultados para independent travel
Resumo:
We present a model for early vision tasks such as denoising, super-resolution, deblurring, and demosaicing. The model provides a resolution-independent representation of discrete images which admits a truly rotationally invariant prior. The model generalizes several existing approaches: variational methods, finite element methods, and discrete random fields. The primary contribution is a novel energy functional which has not previously been written down, which combines the discrete measurements from pixels with a continuous-domain world viewed through continous-domain point-spread functions. The value of the functional is that simple priors (such as total variation and generalizations) on the continous-domain world become realistic priors on the sampled images. We show that despite its apparent complexity, optimization of this model depends on just a few computational primitives, which although tedious to derive, can now be reused in many domains. We define a set of optimization algorithms which greatly overcome the apparent complexity of this model, and make possible its practical application. New experimental results include infinite-resolution upsampling, and a method for obtaining subpixel superpixels. © 2012 IEEE.
Resumo:
The route planning problem for an order in freight transportation involves the selection of the best route for its transportation given a set of options that the network can offer. In its adaptive (or dynamic) version, the problem deals with the planning of a new route for an order while it is actually in transit typically because part or all of its pre-selected route is blocked or disrupted. In the intelligent product approach we are proposing, an order would be capable of identifying and evaluating such new routes in an automated manner and choosing the most preferable one without the intervention of humans. Because such approaches seek to mirror (and then automate) human decision making, in this paper we seek to identify new ways for dynamic route planning in industrial logistics inspired by the way people make similar decisions about their journey when they travel in multi-modal networks. We propose a new simulation game as a methodological tool for capturing their travel behaviour and we use it in this study. The results show that a simulation game can be used for capturing strategies and tactics of travellers and that intelligent products can provide a proper platform for the usage of such strategies in freight logistics. © 2012 IEEE.
Resumo:
Conventional Hidden Markov models generally consist of a Markov chain observed through a linear map corrupted by additive noise. This general class of model has enjoyed a huge and diverse range of applications, for example, speech processing, biomedical signal processing and more recently quantitative finance. However, a lesser known extension of this general class of model is the so-called Factorial Hidden Markov Model (FHMM). FHMMs also have diverse applications, notably in machine learning, artificial intelligence and speech recognition [13, 17]. FHMMs extend the usual class of HMMs, by supposing the partially observed state process is a finite collection of distinct Markov chains, either statistically independent or dependent. There is also considerable current activity in applying collections of partially observed Markov chains to complex action recognition problems, see, for example, [6]. In this article we consider the Maximum Likelihood (ML) parameter estimation problem for FHMMs. Much of the extant literature concerning this problem presents parameter estimation schemes based on full data log-likelihood EM algorithms. This approach can be slow to converge and often imposes heavy demands on computer memory. The latter point is particularly relevant for the class of FHMMs where state space dimensions are relatively large. The contribution in this article is to develop new recursive formulae for a filter-based EM algorithm that can be implemented online. Our new formulae are equivalent ML estimators, however, these formulae are purely recursive and so, significantly reduce numerical complexity and memory requirements. A computer simulation is included to demonstrate the performance of our results. © Taylor & Francis Group, LLC.
Resumo:
The ballistic performance of clamped circular carbon fibre reinforced polymer (CFRP) and Ultra High Molecular Weight Polyethylene (UHMWPE) fibre composite plates of equal areal mass and 0/90 lay-up were measured and compared with that of monolithic 304 stainless steel plates. The effect of matrix shear strength upon the dynamic response was explored by testing: (i) CFRP plates with both a cured and uncured matrix and (ii) UHMWPE laminates with identical fibres but with two matrices of different shear strength. The response of these plates when subjected to mid-span, normal impact by a steel ball was measured via a dynamic high speed shadow moiré technique. Travelling hinges emanate from the impact location and travel towards the supports. The anisotropic nature of the composite plate results in the hinges travelling fastest along the fibre directions and this results in square-shaped moiré fringes in the 0/90 plates. Projectile penetration of the UHMWPE and the uncured CFRP plates occurs in a progressive manner, such that the number of failed plies increases with increasing velocity. The cured CFRP plate, of high matrix shear strength, fails by cone-crack formation at low velocities, and at higher velocities by a combination of cone-crack formation and communition of plies beneath the projectile. On an equal areal mass basis, the low shear strength UHMWPE plate has the highest ballistic limit followed by the high matrix shear strength UHMWPE plate, the uncured CFRP, the steel plate and finally the cured CFRP plate. We demonstrate that the high shear strength UHMWPE plate exhibits Cunniff-type ballistic limit scaling. However, the observed Cunniff velocity is significantly lower than that estimated from the laminate properties. The data presented here reveals that the Cunniff velocity is limited in its ability to characterise the ballistic performance of fibre composite plates as this velocity is independent of the shear properties of the composites: the ballistic limit of fibre composite plates increases with decreasing matrix shear strength for both CFRP and UHMWPE plates. © 2013 Elsevier Masson SAS. All rights reserved.