58 resultados para impaired glucose tolerance
Resumo:
Designing for all requires the adaptation and modification of current design best practices to encompass a broader range of user capabilities. This is particularly the case in the design of the human-product interface. Product interfaces exist everywhere and when designing them, there is a very strong temptation to jump to prescribing a solution with only a cursory attempt to understand the nature of the problem. This is particularly the case when attempting to adapt existing designs, optimised for able-bodied users, for use by disabled users. However, such approaches have led to numerous products that are neither usable nor commercially successful. In order to develop a successful design approach it is necessary consider the fundamental structure of the design process being applied. A three stage design process development strategy which includes problem definition, solution development and solution evaluation, should be adopted. This paper describes the development of a new design approach based on the application of usability heuristics to the design of interfaces. This is illustrated by reference to a particular case study of the re-design of a computer interface for controlling an assistive device.
Resumo:
In this paper, the static and dynamic performance of multi quantum-well (MQW) 1.3 μm InGaAsP Fabry Perot lasers is assessed experimentally and theoretically to identify the mechanisms responsible for impaired high speed performance at elevated temperature. Initially, threshold currents and spontaneous emission spectra are characterized for a range of temperatures from room temperature to 85 °C to indicate a significant increase in non-radiative current contributions. Preliminary estimates are made for the contributions of leakage and Auger recombination rates, found from the dependence of integrated spontaneous emission with carrier density. Drift-diffusion modelling is found to accurately predict the trend of threshold currents over temperature. Using gain modelling good agreement is found between the measured and predicted integrated spontaneous emission intensity. Gain measurements at 85 °C indicate a reduction in RIN frequency to 63% of the 25 °C value which matches well with experimental small signal performance.