37 resultados para hydrophobically modified
Resumo:
External, prestressed carbon fiber reinforced polymer (CFRP) straps can be used to enhance the shear strength of existing reinforced concrete beams. In order to effectively design a strengthening system, a rational predictive theory is required. The current work investigates the ability of the modified compression field theory (MCFT) to predict the behavior of rectangular strap strengthened beams where the discrete CFRP strap forces are approximated as a uniform vertical stress. An unstrengthened control beam and two strengthened beams were tested to verify the predictions. The experimental results suggest that the MCFT could predict the general response of a strengthened beam with a uniform strap spacing < 0.9d. However, whereas the strengthened beams failed in shear, the MCFT predicted flexural failures. It is proposed that a different compression softening model or the inclusion of a crack width limit is required to reflect the onset of shear failures in the strengthened beams.
Resumo:
Eight equations of state (EOS) have been evaluated for the simulation of compressible liquid water properties, based on empirical correlations, the principle of corresponding states and thermodynamic relations. The IAPWS-IF97 EOS for water was employed as the reference case. These EOSs were coupled to a modified AUSM+-up convective flux solver to determine flow profiles for three test cases of differing flow conditions. The impact of the non-viscous interaction term discretisation scheme, interfacial pressure method and selection of low-Mach number diffusion were also compared. It was shown that a consistent discretisation scheme using the AUSM+-up solver for both the convective flux and the non-viscous interfacial term demonstrated both robustness and accuracy whilst facilitating a computationally cheaper solution than discretisation of the interfacial term independently by a central scheme. The simple empirical correlations gave excellent results in comparison to the reference IAPWS-IF97 EOS and were recommended for developmental work involving water as a cheaper and more accurate EOS than the more commonly used stiffened-gas model. The correlations based on the principles of corresponding-states and the modified Peng-Robinson cubic EOS also demonstrated a high degree of accuracy, which is promising for future work with generic fluids. Further work will encompass extension of the solver to multiple dimensions and to account for other source terms such as surface tension, along with the incorporation of phase changes. © 2013.
Resumo:
Recent work has investigated the use of O2 concentration in the intake manifold as a control variable for diesel engines. It has been recognised as a very good indicator of NOX emissions especially during transient operation, however, much of the work is concentrated on estimating the O2 concentration as opposed to measuring it. This work investigates Universal Exhaust Gas Oxygen (UEGO) sensors and their potential to be used for such measurements. In previous work it was shown that these sensors can be operated in a controlled pressure environment such that their response time is of the order 10ms. In this paper, it is shown how the key causes of variation (and therefore potential sources of error) in sensor output, namely, pressure and temperature are largely mitigated by operating the sensors in such an environment. Experiments were undertaken on a representative light duty diesel engine using modified UEGO sensors in the intake and exhaust system. Results from other fast emissions measuring equipment are also shown and it is seen that the UEGO sensors are capable of giving an accurate measurement of O2 and EGR. Copyright © 2013 SAE International.
Resumo:
Peripheral nerve damage is a problem encountered after trauma and during surgery and the development of synthetic polymer conduits may offer a promising alternative to autografts. In order to improve the performance of the polymer to be used for nerve conduits, poly-ε-caprolactone (PCL) films were chemically functionalized with RGD moieties, using a chemical reaction previously developed. In vitro cultures of dissociated dorsal root ganglion (DRG) neurons provide a valid model to study different factors affecting axonal growth. In this work, DRG neurons were cultured on RGD-functionalized PCL films. Adult adipose-derived stem cells differentiated to Schwann cells (dASCs) were initially cultured on the functionalized PCL films, resulting in improved attachment and proliferation. dASCs were also co-cultured with DRG neurons on treated and untreated PCL to assess stimulation by dASCs on neurite outgrowth. Neuron response was generally poor on untreated PCL films, but long neurites were observed in the presence of dASCs or RGD moieties. A combination of the two factors enhanced even further neurite outgrowth, acting synergistically. Finally, in order to better understand the extracellular matrix (ECM)-cell interaction, a β1 integrin blocking experiment was carried out. Neurite outgrowth was not affected by the specific antibody blocking, showing that β1 integrin function can be compensated by other molecules present on the cell membrane. Copyright © 2013 John Wiley & Sons, Ltd.
Resumo:
High power bandwidth-limited picosecond pulses with peak powers in excess of 200 mW have been generated using multi-contact distributed feedback laser diodes for the first time. The pulses have widths typically less than 10 ps, time-bandwidth products of as little as 0·24, and can be generated on demand at generator limited repetition rates of up to 140 MHz.
Resumo:
Conventional alkali-activated slag (AAS) cements suffer from significant drying shrinkage which hinders their widespread application. This paper investigates the potential of using commercial reactive MgO to reduce the drying shrinkage of AAS. Two different reactive MgOs were added at a content of 2.5-7.5 wt% of the slag, which was activated by sodium hydroxide and water-glass. The strength and the drying shrinkage of those reactive MgO modified AAS (MAAS) pastes were measured up to 90 days. It is found that MgO with high reactivity accelerated the early hydration of AAS, while MgO with medium reactivity had little effect. The drying shrinkage was significantly reduced by highly reactive MgO but it also generated severe cracking under the dry condition. On the other hand, medium-reactive MgO only showed observable shrinkage-reducing effect after one month, but the cement soundness was improved. The hydration products, analysed by X-ray diffraction, thermogravimetric analysis and scanning electron microscopy techniques, showed that Mg was mainly incorporated in the hydrotalcite-like phases. It is concluded that the curing conditions and the time of hydrotalcite-like phases formation and their quantity are crucial to the developed strength and shrinkage reduction properties of MAAS, which are highly dependent on the reactivity and content of reactive MgO. Crown Copyright © 2013 Published by Elsevier Ltd. All rights reserved.