41 resultados para high-intensity femtosecond laser pulse
Resumo:
Mode-locked and single-longitudinal-mode waveguide lasers, manufactured by femtosecond laser writing in Er-Yb-doped phosphate glasses, are presented. Transform-limited 1.6-ps pulses and a cw output power exceeding 50 mW have been obtained in the two regimes. © 2007 Optical Society of America.
Resumo:
An error-free free space communication link with 3 angular coverage and 1.25GHz modulation bandwidth is demonstrated by beam steering an ultra high modulation efficiency bright tapered laser diode using a Liquid Crystal Spatial Light Modulator. © OSA 2012.
Radio over free space optical link using a directly modulated two-electrode high power tapered laser
Resumo:
The analog modulation performance of a high-power two-electrode tapered laser is investigated. A 25dB dynamic range for 2.4GHz 802.11g signals is achieved with a 26dB loss budget, showing a >1km free space range is possible. © 2010 Optical Society of America.
Gigabit/s modulation of twin-electrode high-brightness tapered laser with high modulation efficiency
Resumo:
Simultaneous high modulation speed and high modulation efficiency operation of a two-electrode tapered laser is reported. 1Gb/s direct data modulation is achieved with 68mA applied current swing for a 0.95W output optical modulation amplitude. © 2009 Optical Society of America.
Resumo:
Mode-locked and single-longitudinal-mode waveguide lasers, manufactured by femtosecond laser writing in Er-Yb-doped phosphate glasses, are presented. Transform-limited 1.6-ps pulses and a cw output power exceeding 50 mW have been obtained in the two regimes. © 2007 Optical Society of America.
Resumo:
Dense arrays of high aspect ratio Si micro-pyramids have been formed by cumulative high intensity laser irradiation of doped Si wafers in an SF6 environment. A comparative study using nanosecond (XeCl, 308 nm) and femtosecond (Ti: Sapphire, 800 nm and KrF, 248 nm) laser pulses has been performed in this work. The influence of pulse duration and ambient gas pressure (SF6) is also presented. Scanning electron microscopy has shown that upon laser irradiation conical features appear on the Si surface in a rather homogenous distribution and with a spontaneous self alignment into arrays. Their lowest tip diameter is 800 nm; while their height reaches up to 90 mum. Secondary tip decoration appears on the surface of the formed spikes. Areas of 2 X 2 mm(2) covered with Si cones have been tested as cold cathode field emitters. After several conditioning cycles, the field emission threshold for the studied Si tips is as low as 2 V/mum, with an emission current of 10(-3) A/cm(2) at 4 V/mum. Even though these structures have smaller aspect ratios than good quality carbon nanotubes, their field emission properties are similar. The simple and direct formation of field emission Si arrays over small pre-selected areas by laser irradiation could lead to a novel approach for the development of electron sources. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A novel technique for high quality femtosecond pulse generation from a gain-switched laser diode by means of pulse compression and transformation in a compact nonlinear fiber device, based on a dispersion-imbalanced fiber loop mirror (DILM) is demonstrated. This source allows the generation of extremely high quality pulses as short as 270 fs on demand with strong suppression of pulse pedestals. Spectral filtering in arrayed waveguide grating (AWG) converts the device into a compact multiwavelength source of high-quality picosecond pulses for optical time division multiplexing/wavelength division multiplexing applications.
Resumo:
The propagation of ultrashort pulses in a traveling wave semiconductor amplifier is considered. It is demonstrated that the effective polarization relaxation time, which determines the coherence of the interaction of pulses within the medium, strongly depends on its optical gain. As a result, it is shown that at large optical gains the coherence time can exceed the transverse relaxation time T2 by an order of magnitude, this accounting for the strong femtosecond superradiant pulse generation commonly observed in semiconductor laser structures. © 2012 Elsevier B.V. All rights reserved.
Resumo:
A study on the nanosecond fiber laser interaction with silicon was performed experimentally for the generation of percussion drilled holes. Single pulse ablation experiments were carried out on mono crystalline 650μm thick Si wafers. Changes of the mass removal mechanism were investigated by varying laser fluence up to 68 J/cm2 and pulse duration from 50 ns to 200 ns. Hole width and depth were measured and surface morphology were studied using scanning electron microscopy (SEM) and optical interferometric profilometry (Veeco NT3300). High speed photography was also used to examine laser generated plasma expansion rates. The material removal rate was found to be influenced by the pulse energy, full pulse duration and pulse peak power. Single pulse ablation depth of 4.42 μm was achieved using a 200 ns pulse of 13.3 J/cm 2, giving a maximum machining efficiency of 31.86 μm per mJ. Holes drilled with an increased fluence but fixed pulse length were deeper, exhibited low recast, but were less efficient than those produced at a lower fluence. The increased peak power in this case led to high levels of plasma and vapour production. The expansion of which, results in a strong driving recoil force, an increase in the rate and volume of melt ejection, and cleaner hole formation. The experimental findings show that for efficient drilling at a given energy, a longer, lower peak power pulse is more desirable than a high peak power short pulse.