39 resultados para flow over bottom topography


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract-Mathematical modelling techniques are used to predict the axisymmetric air flow pattern developed by a state-of-the-art Banged exhaust hood which is reinforced by a turbulent radial jet flow. The high Reynolds number modelling techniques adopted allow the complexity of determining the hood's air Bow to be reduced and provide a means of identifying and assessing the various parameters that control the air Bow. The mathematical model is formulated in terms of the Stokes steam function, ψ, and the governing equations of fluid motion are solved using finite-difference techniques. The injection flow of the exhaust hood is modelled as a turbulent radial jet and the entrained Bow is assumed to be an inviscid potential flow. Comparisons made between contours of constant air speed and centre-line air speeds deduced from the model and all the available experimental data show good agreement over a wide range of typical operating conditions. | Mathematical modelling techniques are used to predict the axisymmetric air flow pattern developed by a state-of-the-art flanged exhaust hood which is reinforced by a turbulent radial jet flow. The high Reynolds number modelling techniques adopted allow the complexity of determining the hood's air flow to be reduced and provide a means of identifying and assessing the various parameters that control the air flow. The mathematical model is formulated in terms of the Stokes steam function, Ψ, and the governing equations of fluid motion are solved using finite-difference techniques. The injection flow of the exhaust hood is modelled as a turbulent radial jet and the entrained flow is assumed to be an inviscid potential flow. Comparisons made between contours of constant air speed and centre-line air speeds deduced from the model and all the available experimental data show good agreement over a wide range of typical operating conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A heated rotating cavity with an axial throughflow of cooling air is used as a model for the flow in the cylindrical cavities between adjacent discs of a high-pressure gas-turbine compressor. In an engine the flow is expected to be turbulent, the limitations of this laminar study are fully realised but it is considered an essential step to understand the fundamental nature of the flow. The three-dimensional, time-dependent governing equations are solved using a code based on the finite volume technique and a multigrid algorithm. The computed flow structure shows that flow enters the cavity in one or more radial arms and then forms regions of cyclonic and anticyclonic circulation. This basic flow structure is consistent with existing experimental evidence obtained from flow visualization. The flow structure also undergoes cyclic changes with time. For example, a single radial arm, and pair of recirculation regions can commute to two radial arms and two pairs of recirculation regions and then revert back to one. The flow structure inside the cavity is found to be heavily influenced by the radial distribution of surface temperature imposed on the discs. As the radial location of the maximum disc temperature moves radially outward, this appears to increase the number of radial arms and pairs of recirculation regions (from one to three for the distributions considered here). If the peripheral shroud is also heated there appear to be many radial arms which exchange fluid with a strong cyclonic flow adjacent to the shroud. One surface temperature distribution is studied in detail and profiles of the relative tangential and radial velocities are presented. The disc heat transfer is also found to be influenced by the disc surface temperature distribution. It is also found that the computed Nusselt numbers are in reasonable accord over most of the disc surface with a correlation found from previous experimental measurements. © 1994, MCB UP Limited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vertically oriented GaAs nanowires (NWs) are grown on Si(111) substrates using metal-organic chemical vapor deposition. Controlled epitaxial growth along the 111 direction is demonstrated following the deposition of thin GaAs buffer layers and the elimination of structural defects, such as twin defects and stacking faults, is found for high growth rates. By systematically manipulating the AsH 3 (group-V) and TMGa (group-III) precursor flow rates, it is found that the TMGa flow rate has the most significant effect on the nanowire quality. After capping the minimal tapering and twin-free GaAs NWs with an AlGaAs shell, long exciton lifetimes (over 700ps) are obtained for high TMGa flow rate samples. It is observed that the Ga adatom concentration significantly affects the growth of GaAs NWs, with a high concentration and rapid growth leading to desirable characteristics for optoelectronic nanowire device applications including improved morphology, crystal structure and optical performance. © 2012 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Superhydrophobic surfaces are shown to be effective for surface drag reduction under laminar regime by both experiments and simulations (see for example, Ou and Rothstein, Phys. Fluids 17:103606, 2005). However, such drag reduction for fully developed turbulent flow maintaining the Cassie-Baxter state remains an open problem due to high shear rates and flow unsteadiness of turbulent boundary layer. Our work aims to develop an understanding of mechanisms leading to interface breaking and loss of gas pockets due to interactions with turbulent boundary layers. We take advantage of direct numerical simulation of turbulence with slip and no-slip patterned boundary conditions mimicking the superhydrophobic surface. In addition, we capture the dynamics of gas-water interface, by deriving a proper linearized boundary condition taking into account the surface tension of the interface and kinematic matching of interface deformation and normal velocity conditions on the wall. We will show results from our simulations predicting the dynamical behavior of gas pocket interfaces over a wide range of dimensionless surface tensions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The linear, drag-reducing effect of vanishingly small riblets breaks down once their size is in the transitionally-rough regime. We have previously reported that this breakdown is caused by the additional Reynolds stresses produced by the appearance of elongated spanwise rollers just above the riblet surface. These rollers are related with the Kelvin--Helmholtz instability of free shear layers, and to similar structures appearing over other rough and porous surfaces. However, because of the limited Reτ=180 in our previous DNSes, it could not be determined whether those structures scaled in inner or outer units. Furthermore, it is questionable if results in the transitionally-rough regime at Reτ=180 can be extrapolated to configurations of practical interest. At such small Reynolds numbers, roughness of transitional size can perturb a large portion of the boundary layer, which is not the case in most industrial and atmospheric applications. To clarify these issues we have conducted a set of DNSes at Reτ=550. Our results indicate that the spanwise rollers scale in wall units, and support the validity of the extrapolation to configurations of practical interest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Riblets are small surface protrusions aligned with the flow direction, which confer an anisotropic roughness to the surface [6]. We have recently reported that the transitional-roughness effect in riblets, which limits their performance, is due to a Kelvin–Helmholtz-like instability of the overlying mean flow [7]. According to our DNSs, the instability sets on as the Reynolds number based on the roughness size of the riblets increases, and coherent, elongated spanwise vortices begin to develop immediately above the riblet tips, causing the degradation of the drag-reduction effect. This is a very novel concept, since prior studies had proposed that the degradation was due to the interaction of riblets with the flow as independent units, either to the lodging of quasi-streamwise vortices in the surface grooves [2] or to the shedding of secondary streamwise vorticity at the riblet peaks [9]. We have proposed an approximate inviscid analysis for the instability, in which the presence of riblets is modelled through an average boundary condition for an overlying, spanwise-independent mean flow. This simplification lacks the accuracy of an exact analysis [4], but in turn applies to riblet surfaces in general. Our analysis succeeds in predicting the riblet size for the onset of the instability, while qualitatively reproducing the wavelengths and shapes of the spanwise structures observed in the DNSs. The analysis also connects the observations with the Kelvin–Helmholtz instability of mixing layers. The fundamental riblet length scale for the onset of the instability is a ‘penetration length,’ which reflects how easily the perturbation flow moves through the riblet grooves. This result is in excellent agreement with the available experimental evidence, and has enabled the identification of the key geometric parameters to delay the breakdown. Although the appearance of elongated spanwise vortices was unexpected in the case of riblets, similar phenomena had already been observed over other rough [3], porous [1] and permeable [11] surfaces, as well as over plant [5,14] and urban [12] canopies, both in the transitional and in the fully-rough regimes. However, the theoretical analyses that support the connection of these observations with the Kelvin–Helmholtz instability are somewhat scarce [7, 11, 13]. It has been recently proposed that Kelvin–Helmholtz-like instabilities are a dominant feature common to “obstructed” shear flows [8]. It is interesting that the instability does not require an inflection point to develop, as is often claimed in the literature. The Kelvin-Helmholtz rollers are rather triggered by the apparent wall-normal-transpiration ability of the flow at the plane immediately above the obstructing elements [7,11]. Although both conditions are generally complementary, if wall-normal transpiration is not present the spanwise vortices may not develop, even if an inflection point exists within the roughness [10]. REFERENCES [1] Breugem, W. P., Boersma, B. J. & Uittenbogaard, R. E. 2006 J. Fluid Mech. 562, 35–72. [2] Choi, H., Moin, P. & Kim, J. 1993 J. Fluid Mech. 255, 503–539. [3] Coceal, O., Dobre, A., Thomas, T. G. & Belcher, S. E. 2007 J. Fluid Mech. 589, 375–409. [4] Ehrenstein, U. 2009 Phys. Fluids 8, 3194–3196. [5] Finnigan, J. 2000 Ann. Rev. Fluid Mech. 32, 519–571. [6] Garcia-Mayoral, R. & Jimenez, J. 2011 Phil. Trans. R. Soc. A 369, 1412–1427. [7] Garcia-Mayoral, R. & Jimenez, J. 2011 J. Fluid Mech. doi: 10.1017/jfm.2011.114. [8] Ghisalberti, M. 2009 J. Fluid Mech. 641, 51–61. [9] Goldstein, D. B. & Tuan, T. C. 1998 J. Fluid Mech. 363, 115–151. [10] Hahn, S., Je, J. & Choi, H. 2002 J. Fluid Mech. 450, 259–285. [11] Jimenez, J., Uhlman, M., Pinelli, A. & G., K. 2001 J. Fluid Mech. 442, 89–117. [12] Letzel, M. O., Krane, M. & Raasch, S. 2008 Atmos. Environ. 42, 8770–8784. [13] Py, C., de Langre, E. & Moulia, B. 2006 J. Fluid Mech. 568, 425–449. [14] Raupach, M. R., Finnigan, J. & Brunet, Y. 1996 Boundary-Layer Meteorol. 78, 351–382.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results of numerical investigations of the wet steam flow in a three stage low pressure steam turbine test rig are presented. The test rig is a scale model of a modern steam turbine design and provides flow measurements over a range of operating conditions which are used for detailed comparisons with the numerical results. For the numerical analysis a modern CFD code with user defined models for specific wet steam modelling is used. The effect of different theoretical models for nucleation and droplet growth are examined. It is shown that heterogeneous condensation is highly dependent on steam quality and, in this model turbine with high quality steam, a homogeneous theory appears to be the best choice. The homogeneous theory gives good agreement between the test rig traverse measurements and the numerical results. The differences in the droplet size distribution of the three stage turbine are shown for different loads and modelling assumptions. The different droplet growth models can influence the droplet size by a factor of two. An estimate of the influence of unsteady effects is made by means of an unsteady two-dimensional simulation. The unsteady modelling leads to a shift of nucleation into the next blade row. For the investigated three stage turbine the influence due to wake chopping on the condensation process is weak but to confirm this conclusion further investigations are needed in complete three dimensions and on turbines with more stages. Copyright © 2011 by ASME.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Helmholtz resonators are commonly used as absorbers of incident acoustic power. Theoretical and experimental investigations have been performed in the four cases of no mean flow, grazing mean flow, bias mean flow and a combination of grazing and bias mean flows. In the absence of a mean flow, the absorption coefficient (deflned as the proportion of incident energy absorbed) is a non-linear function of the acoustic pressure and high incident acoustic pressures are required before the absorption becomes signiflcant. In contrast, when there is a mean flow present, either grazing or bias, the absorption is linear and thus absorption coefficient is independent of the magnitude of the acoustic pressure, and absorption is obtained over a wider range of frequencies. Non-linear effects are only discernible very close to resonance and at very-high amplitude. With grazing mean flow, there is the undesirable effect that sound can be generated over a range of frequencies due to the interaction between the unsteadily shed vorticity waves and the downstream edge of the aperture. This production is not observed when there is a bias flow because here the vorticity is shed all around the rim of the aperture and swept away by the mean flow. When there is both a grazing mean flow and a mean bias flow, we flnd that only a small amount of bias mean flow, compared with grazing mean flow, is required to destroy the production of acoustic energy. © 2002 by the author(s). Published by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A methodology for the analysis of building energy retrofits has been developed for a diverse set of buildings at the Royal Botanic Gardens (RBG), Kew in southwest London, UK. The methodology requires selection of appropriate building simulation tools dependent on the nature of the principal energy demand. This has involved the development of a stand-alone model to simulate the heat flow in botanical glasshouses, as well as stochastic simulation of electricity demand for buildings with high equipment density and occupancy-led operation. Application of the methodology to the buildings at RBG Kew illustrates the potential reduction in energy consumption at the building scale achievable from the application of retrofit measures deemed appropriate for heritage buildings and the potential benefit to be gained from onsite generation and supply of energy. © 2014 Elsevier Ltd.