47 resultados para electromagnetic reflection


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a time-stepping shaker modeling scheme. The new method improves the accuracy of analysis of armature-position-dependent inductances and force factors, analysis of axial variation of current density in copper plates (short-circuited turns), and analysis of cooling holes in the magnetic circuit. Linear movement modeling allows armature position to be precisely included in the shaker analysis. A more accurate calculation of eddy currents in the coupled circuit is in particular crucial for the shaker analysis in a mid-or high-frequency operation range. Large currents in a shaker, including eddy currents, incur large Joule losses, which in turn require the use of a cooling system to keep temperature at bay. Sizable cooling holes have influence on the saturation state of iron poles, and hence have to be properly taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report enhanced reflection displayed by arrays of silicon based inverted nanocones. Theoretical studies suggest that such arrays display enhanced reflection and photonic band gaps within the optical and near infrared regions. Measured results show three to four fold enhancement in reflection and agree well with calculations. Such arrays can be used to enhance infrared reflection in photovoltaic devices which mostly contribute towards heating. © 2011 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple color states have been realized in single unit cell using double electrochromic (EC) reaction. The precise control of bistability in EC compounds which can maintain several colors on the two separated electrodes allows this new type of pixel to be realized. The specific electrical driving gives a way to maintain both sides in the reduced EC states and this colors overlapping in the vertical view direction can achieve the black state. The four color states (G, B, W, BK) in one cell/pixel can make a valuable progress to achieve a high quality color devices such like electronic paper, outdoor billboard, smart window and flexible display using external light source. © 2012 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heterojunction is an important structure for the development of photovoltaic solar cells. In contrast to homojunction structures, heterojunction solar cells have internal crystalline interfaces, which will reflect part of the incident light, and this has not been considered carefully before though many heterostructure solar cells have been commercialized. This paper discusses the internal reflection for various material systems used for the development of heterostructure-based solar cells. It has been found that the most common heterostructure solar cells have internal reflection less than 2%, while some potential heterojunction solar cells such as ITO/GaAs, ITO/InP, Si/Ge, polymer/semiconductors and oxide semiconductors may have internal reflection as high as 20%. Also it is worse to have a window layer with a lower refractive index than the absorption layer for solar cells. Ignoring this strong internal reflection will lead to severe deterioration and reduction of conversion efficiency; therefore measures have to be taken to minimize or prevent this internal reflection. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In view of its special features, the brushless doubly fed induction generator (BDFIG) shows high potentials to be employed as a variable-speed drive or wind generator. However, the machine suffers from low efficiency and power factor and also high level of noise and vibration due to spatial harmonics. These harmonics arise mainly from rotor winding configuration, slotting effects, and saturation. In this paper, analytical equations are derived for spatial harmonics and their effects on leakage flux, additional loss, noise, and vibration. Using the derived equations and an electromagnetic-thermal model, a simple design procedure is presented, while the design variables are selected based on sensitivity analyses. A multiobjective optimization method using an imperialist competitive algorithm as the solver is established to maximize efficiency, power factor, and power-to-weight ratio, as well as to reduce rotor spatial harmonic distortion and voltage regulation simultaneously. Several constraints on dimensions, magnetic flux densities, temperatures, vibration level, and converter voltage and rating are imposed to ensure feasibility of the designed machine. The results show a significant improvement in the objective function. Finally, the analytical results of the optimized structure are validated using finite-element method and are compared to the experimental results of the D180 frame size prototype BDFIG. © 1982-2012 IEEE.