89 resultados para core-shell-polymerization
Resumo:
The creep response of metallic foam sandwich beams in 3-point bend is investigated numerically for the case of a metallic foam core and two steel faces. The face sheets are treated as elastic, while the foam core is modeled by a viscoplastic extension of the Deshpande-Fleck yield surface. This power-law creeping constitutive law has been implemented within the commercial finite element code ABAQUS. It is found that the beams creep by a variety of competing mechanisms, depending upon the choice of material properties and the geometric parameters. A failure map is constructed and effect of rate dependence on the load-deflection curves is quantified, and compared against the available experimental data.
Resumo:
Plastic collapse modes of sandwich beams have been investigated experimentally and theoretically for the case of an aluminum alloy foam with cold-worked aluminum face sheets. Plastic collapse is by three competing mechanisms: face yield, indentation and core shear, with the active mechanism depending upon the choice of geometry and material properties. The collapse loads, as predicted by simple upper bound solutions for a rigid, ideally plastic beam, and by more refined finite element calculations are generally in good agreement with the measured strengths. However, a thickness effect of the foam core on the collapse strength is observed for collapse by core shear: the shear strength of the core increases with diminishing core thickness in relation to the cell size. Limit load solutions are used to construct collapse maps, with the beam geometrical parameters as axes. Upon displaying the collapse load for each collapse mechanism, the regimes of dominance of each mechanism and the associate mass of the beam are determined. The map is then used in optimal design by minimizing the beam weight for a given structural load index.
Resumo:
Self-assembly processes resulting in linear structures are often observed in molecular biology, and include the formation of functional filaments such as actin and tubulin, as well as generally dysfunctional ones such as amyloid aggregates. Although the basic kinetic equations describing these phenomena are well-established, it has proved to be challenging, due to their non-linear nature, to derive solutions to these equations except for special cases. The availability of general analytical solutions provides a route for determining the rates of molecular level processes from the analysis of macroscopic experimental measurements of the growth kinetics, in addition to the phenomenological parameters, such as lag times and maximal growth rates that are already obtainable from standard fitting procedures. We describe here an analytical approach based on fixed-point analysis, which provides self-consistent solutions for the growth of filamentous structures that can, in addition to elongation, undergo internal fracturing and monomer-dependent nucleation as mechanisms for generating new free ends acting as growth sites. Our results generalise the analytical expression for sigmoidal growth kinetics from the Oosawa theory for nucleated polymerisation to the case of fragmenting filaments. We determine the corresponding growth laws in closed form and derive from first principles a number of relationships which have been empirically established for the kinetics of the self-assembly of amyloid fibrils.