37 resultados para coiled-coil


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a comparative study of ac magnetization losses in two types of 2 G HTS racetrack coils. The magnetic substrate made by RABiTS is the main difference between the two types, because ferromagnetic loss caused by magnetic substrate is accounted into the total ac losses. IBAD and RABiTS tapes were successfully wound into racetrack shape with identical geometry. The measurements were carried out by using electromagnetic method with pick-up coils under a sinusoidally varying external magnetic field, with amplitudes up to 27 mT, ranging from 10 Hz to 100 Hz at a temperature of 77 K. The field was oriented perpendicularly to the surface of the tapes. Experimental measurements were validated by applying theoretical models and the results showed that the magnetization loss in the MAG RABiTS coil is always higher than that in the NON MAG coil due to the presence of the magnetic substrate, which increases the magnetic field penetration into the coil and causes higher magnetic flux density within the penetrated region. © 2002-2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HTS racetrack coils are becoming important elements of an emerging number of superconducting devices such as generators or motors. In these devices the issue of AC loss is crucial, as performance and cooling power are derived from this quantity. This paper presents a comparative study of transport AC loss in two different types of 2G HTS racetrack coils. In this study, both experimental measurements and computer simulation approaches were employed. All the experiments were performed using classical AC electrical method. The finite-element computer model was used to estimate electromagnetic properties and calculate transport AC loss. The main difference between the characterized coils is covered inside tape architectures. While one coil uses tape based on RABITS magnetic substrate, the second coil uses a non-magnetic tape. Ferromagnetic loss caused by a magnetic substrate is an important issue involved in the total AC loss. As a result, the coil with the magnetic substrate surprised with high AC loss and rather low performance. © 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper studies 2G high-temperature superconducting (HTS) coils for electric machine armature windings, using finite element method (FEM) and H formulation. A FEM model for 2G HTS racetrack coil is built in COMSOL, and is well validated by comparing calculated ac loss with experimental measurements. The FEM model is used to calculate transport loss in HTS armature windings, using air-cored design. We find that distributed winding used in conventional machine design is an effective way to reduce transport loss of HTS armature winding, in terms of air-cored design. Based on our study, we give suggestions on the design of low loss HTS armature winding. © 2002-2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HTS racetrack coils are becoming important elements of an emerging number of superconducting devices such as generators or motors. In these devices the issue of AC loss is crucial, as performance and cooling power are derived from this quantity. This paper presents a comparative study of transport AC loss in two different types of 2G HTS racetrack coils. In this study, both experimental measurements and computer simulation approaches were employed. All the experiments were performed using classical AC electrical method. The finite-element computer model was used to estimate electromagnetic properties and calculate transport AC loss. The main difference between the characterized coils is covered inside tape architectures. While one coil uses tape based on RABITS magnetic substrate, the second coil uses a non-magnetic tape. Ferromagnetic loss caused by a magnetic substrate is an important issue involved in the total AC loss. As a result, the coil with the magnetic substrate surprised with high AC loss and rather low performance. © 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have studied numerically and experimentally the magnetic flux penetration in high-Tc superconducting tube subjected to a uniform magnetic field parallel to its long axis. This study is carried in view of designing low-frequency magnetic shields by exploiting the diamagnetic properties of high-Tc superconducting ceramics. We have measured the field attenuation for applied magnetic fields in the frequency range 5 mHz-0.1 Hz by Hall probe measurements and at audio frequencies using a sensing coil. A simple 1D analysis using the Kim critical state model was found to be able to reproduce the experimental data satisfactorily. We have also determined the phase shift between the internal and the applied field both experimentally and numerically. Finally, we have studied the sweep rate dependence of the magnetic shielding properties, using data recorded either at several constant sweep rates dB /dt or at several AC fields of various amplitudes and frequencies. Both methods agree with each other and lead to a n-value of the E ∼ Jn law equal to ∼40 at 77 K. © 2009 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using computational modeling, we investigate the mechanical properties of polymeric materials composed of coiled chains, or "globules", which encompass a folded secondary structure and are cross-linked by labile bonds to form a macroscopic network. In the presence of an applied force, the globules can unfold into linear chains and thereby dissipate energy as the network is deformed; the latter attribute can contribute to the toughness of the material. Our goal is to determine how to tailor the labile intra- and intermolecular bonds within the network to produce material exhibiting both toughness and strength. Herein, we use the lattice spring model (LSM) to simulate the globules and the cross-linked network. We also utilize our modified Hierarchical Bell model (MHBM) to simulate the rupture and reforming of N parallel bonds. By applying a tensile deformation, we demonstrate that the mechanical properties of the system are sensitive to the values of N in and N out, the respective values of N for the intra- and intermolecular bonds. We find that the strength of the material is mainly controlled by the value of N out, with the higher value of N out providing a stronger material. We also find that, if N in is smaller than N out, the globules can unfold under the tensile load before the sample fractures and, in this manner, can increase the ductility of the sample. Our results provide effective strategies for exploiting relatively weak, labile interactions (e.g., hydrogen bonding or the thiol/disulfide exchange reaction) in both the intra- and intermolecular bonds to tailor the macroscopic performance of the materials. © 2011 American Chemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large grain, bulk Y-Ba-Cu-O (YBCO) high temperature superconductors (HTS) have significant potential for use in a variety of practical applications that incorporate powerful quasi-permanent magnets. In the present work, we investigate how the trapped field of such magnets can be improved by combining bulk YBCO with a soft FeNi, ferromagnetic alloy. This involves machining the alloy into components of various shapes, such as cylinders and rings, which are attached subsequently to the top surface of a solid, bulk HTS cylinder. The effect of these modifications on the magnetic hysteresis curve and trapped field of the bulk superconductor at 77 K are then studied using pick-up coil and Hall probe measurements. The experimental data are compared to finite element modelling of the magnetic flux distribution using Campbell's algorithm. Initially we establish the validity of the technique involving pick-up coils wrapped around the bulk superconductor to obtain its magnetic hysteresis curve in a non-destructive way and highlight the difference between the measured signal and the true magnetization of the sample. We then consider the properties of hybrid ferromagnet/superconductor (F/S) structures. Hall probe measurements, together with the results of the model, establish that flux lines curve outwards through the ferromagnet, which acts, effectively, like a magnetic short circuit. Magnetic hysteresis curves show that the effects of the superconductor and the ferromagnet simply add when the ferromagnet is saturated fully by the applied field. The trapped field of the hybrid structure is always larger than that of the superconductor alone below this saturation level, and especially when the applied field is removed. The results of the study show further that the beneficial effects on the trapped field are enhanced when the ferromagnet covers the entire surface of the superconductor for different ferromagnetic components of various shapes and fixed volume. © 2014 Elsevier B.V. All rights reserved.