115 resultados para chemical vapor transport
Resumo:
As these results indicate, photo-CVD coating is a robust process that allows for the creation of core-shell nanoparticles. In the present work we demonstrated that photo-CVD can effectively coat Fe2O3 particles with silica for purposes of biological applications. TDMA results combined with TEM images indicate that all particles are effectively coated and that particle coating thicknesses can be tuned to desired thickness depending on the application. In addition, the ability to vary coating properties and to coat high concentrations of particles makes this technique of interest for industrial production where uniform properties are needed for large quantities of particles [2]. Copyright © 2010 by ASME.
Resumo:
Vertically-aligned carbon nanotubes (VA-CNTs) were rapidly grown from ethanol and their chemistry has been studied using a "cold-gas" chemical vapor deposition (CVD) method. Ethanol vapor was preheated in a furnace, cooled down and then flowed over cobalt catalysts upon ribbon-shaped substrates at 800 °C, while keeping the gas unheated. CNTs were obtained from ethanol on a sub-micrometer scale without preheating, but on a millimeter scale with preheating at 1000 °C. Acetylene was predicted to be the direct precursor by gas chromatography and gas-phase kinetic simulation, and actually led to millimeter-tall VA-CNTs without preheating when fed with hydrogen and water. There was, however a difference in CNT structure, i.e. mainly few-wall tubes from pyrolyzed ethanol and mainly single-wall tubes for unheated acetylene, and the by-products from ethanol pyrolysis possibly caused this difference. The "cold-gas" CVD, in which the gas-phase and catalytic reactions are separately controlled, allowed us to further understand CNT growth. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Large area uniform nanocrystalline graphene is grown by chemical vapor deposition on arbitrary insulating substrates that can survive ∼1000°C. The as-synthesized graphene is nanocrystalline with a domain size in the order of ∼10 nm. The material possesses a transparency and conductivity similar to standard graphene fabricated by exfoliation or catalysis. A noncatalytic mechanism is proposed to explain the experimental phenomena. The developed technique is scalable and reproducible, compatible with the existing semiconductor technology, and thus can be very useful in nanoelectronic applications such as transparent electronics, nanoelectromechanical systems, as well as molecular electronics. © 2012 IEEE.
Resumo:
Direct formation of large-area carbon thin films on gallium nitride by chemical vapor deposition without metallic catalysts is demonstrated. A high flow of ammonia is used to stabilize the surface of the GaN (0001)/sapphire substrate during the deposition at 950°C. Various characterization methods verify that the synthesized thin films are largely sp 2 bonded, macroscopically uniform, and electrically conducting. The carbon thin films possess optical transparencies comparable to that of exfoliated graphene. This paper offers a viable route toward the use of carbon-based materials for future transparent electrodes in III-nitride optoelectronics, such as GaN-based light emitting diodes and laser diodes. © 1988-2012 IEEE.
Resumo:
A systematic study of the parameter space of graphene chemical vapor deposition (CVD) on polycrystalline Cu foils is presented, aiming at a more fundamental process rationale in particular regarding the choice of carbon precursor and mitigation of Cu sublimation. CH 4 as precursor requires H 2 dilution and temperatures ≥1000 °C to keep the Cu surface reduced and yield a high-quality, complete monolayer graphene coverage. The H 2 atmosphere etches as-grown graphene; hence, maintaining a balanced CH 4/H 2 ratio is critical. Such balance is more easily achieved at low-pressure conditions, at which however Cu sublimation reaches deleterious levels. In contrast, C 6H 6 as precursor requires no reactive diluent and consistently gives similar graphene quality at 100-150 °C lower temperatures. The lower process temperature and more robust processing conditions allow the problem of Cu sublimation to be effectively addressed. Graphene formation is not inherently self-limited to a monolayer for any of the precursors. Rather, the higher the supplied carbon chemical potential, the higher the likelihood of film inhomogeneity and primary and secondary multilayer graphene nucleation. For the latter, domain boundaries of the inherently polycrystalline CVD graphene offer pathways for a continued carbon supply to the catalyst. Graphene formation is significantly affected by the Cu crystallography; i.e., the evolution of microstructure and texture of the catalyst template form an integral part of the CVD process. © 2012 American Chemical Society.