50 resultados para cardiac structure and function
Resumo:
Nanostructured carbon thin films have been grown by deposition of cluster beams produced by a supersonic expansion. Due to separation effects typical of supersonic beams, films with different nanostructures can be grown by the simple intercepting of different regions of the cluster beam with a substrate. Films show a low-density porous structure, which has been characterized by Raman and Brillouin spectroscopy. Film morphology suggests that growth processes are similar to those occurring in a ballistic deposition regime.
Resumo:
Field angle dependent critical current, magneto-optical microscopy and high resolution electron microscopy studies have been performed on YBa2Cu3O7-delta thin films grown on miscut substrates. High resolution electron microscopy images show that the films studied exhibited clean epitaxial growth with a low density of antiphase boundaries and stacking faults. Any antiphase boundaries (APBs) formed near the film substrate interface rapidly healed rather than extending through the thickness of the film. Unlike vicinal films grown on annealed substrates, which contain a high density of antiphase boundaries, magneto-optical imaging showed no filamentary flux penetration in the films studied. The flux penetration is, however, asymmetric. This is associated with intrinsic pinning of flux strings by the tilted a-b planes and the dependence of the pinning force on the angle between the local field and the a-b planes. Field angle dependent critical current measurements exhibited the striking vortex channeling effect previously reported in vicinal films. By combining the results of three complementary characterization techniques it is shown that extended APB free films exhibit markedly different critical current behavior compared to APB rich films. This is attributed to the role of APB sites as strong pinning centers for Josephson string vortices between the a-b planes. (C) 2003 American Institute of Physics.
Resumo:
To support the development and analysis of engineering designs at the embodiment stage, designers work iteratively with representations of those designs as they consider the function and form of their constituent parts. Detailed descriptions of "what a machine does" usually include flows of forces and active principles within the technical system, and their localization within parts and across the interfaces between them. This means that a representation should assist a designer in considering form and function at the same time and at different levels of abstraction. This paper describes a design modelling approach that enables designers to break down a system architecture into its subsystems and parts, while assigning functions and flows to parts and the interfaces between them. In turn, this may reveal further requirements to fulfil functions in order to complete the design. The approach is implemented in a software tool which provides a uniform, computable language allowing the user to describe functions and flows as they are iteratively discovered, created and embodied. A database of parts allows the user to search for existing design solutions. The approach is illustrated through an example: modelling the complex mechanisms within a humanoid robot. Copyright © 2010 by ASME.
Resumo:
The uncertainty associated with a rainfall-runoff and non-point source loading (NPS) model can be attributed to both the parameterization and model structure. An interesting implication of the areal nature of NPS models is the direct relationship between model structure (i.e. sub-watershed size) and sample size for the parameterization of spatial data. The approach of this research is to find structural limitations in scale for the use of the conceptual NPS model, then examine the scales at which suitable stochastic depictions of key parameter sets can be generated. The overlapping regions are optimal (and possibly the only suitable regions) for conducting meaningful stochastic analysis with a given NPS model. Previous work has sought to find optimal scales for deterministic analysis (where, in fact, calibration can be adjusted to compensate for sub-optimal scale selection); however, analysis of stochastic suitability and uncertainty associated with both the conceptual model and the parameter set, as presented here, is novel; as is the strategy of delineating a watershed based on the uncertainty distribution. The results of this paper demonstrate a narrow range of acceptable model structure for stochastic analysis in the chosen NPS model. In the case examined, the uncertainties associated with parameterization and parameter sensitivity are shown to be outweighed in significance by those resulting from structural and conceptual decisions. © 2011 Copyright IAHS Press.