97 resultados para bandwidth AMSC: 11T71,94A15,14G50
Resumo:
A new dynamic regime in a multisegmented AlGaAs/GaAs DH injection laser has been realised. Generation of bandwidth-limited 100 GHz repetition rate pulses has been demonstrated. This value is claimed to be the largest ever reported for an ultrashort pulse repetition frequency obtained directly from a laser.
Resumo:
Accurate estimation of the instantaneous frequency of speech resonances is a hard problem mainly due to phase discontinuities in the speech signal associated with excitation instants. We review a variety of approaches for enhanced frequency and bandwidth estimation in the time-domain and propose a new cognitively motivated approach using filterbank arrays. We show that by filtering speech resonances using filters of different center frequency, bandwidth and shape, the ambiguity in instantaneous frequency estimation associated with amplitude envelope minima and phase discontinuities can be significantly reduced. The novel estimators are shown to perform well on synthetic speech signals with frequency and bandwidth micro-modulations (i.e., modulations within a pitch period), as well as on real speech signals. Filterbank arrays, when applied to frequency and bandwidth modulation index estimation, are shown to reduce the estimation error variance by 85% and 70% respectively. © 2013 IEEE.
Resumo:
A binary grating on a Spatial Light Modulator generates twin antiphase spots with adjustable positions across the core of a multimode fibre allowing adaptive excitation of antisymmetric mode-groups for improving modal dispersion or modal multiplexing. © 2011 AOS.
Resumo:
The development of transparent radio-frequency electronics has been limited, until recently, by the lack of suitable materials. Naturally thin and transparent graphene may lead to disruptive innovations in such applications. Here, we realize optically transparent broadband absorbers operating in the millimetre wave regime achieved by stacking graphene bearing quartz substrates on a ground plate. Broadband absorption is a result of mutually coupled Fabry-Perot resonators represented by each graphene-quartz substrate. An analytical model has been developed to predict the absorption performance and the angular dependence of the absorber. Using a repeated transfer-and-etch process, multilayer graphene was processed to control its surface resistivity. Millimetre wave reflectometer measurements of the stacked graphene-quartz absorbers demonstrated excellent broadband absorption of 90% with a 28% fractional bandwidth from 125-165 GHz. Our data suggests that the absorbers' operation can also be extended to microwave and low-terahertz bands with negligible loss in performance.
Resumo:
We propose a new practical multimode fiber optical launch scheme, providing near single mode group excitation for >5 times transmission bandwidth improvement. Equalization-free transmission of a 10-Gb/s signal over 220-m fiber is achieved in experimental demonstrations. © 2010 Optical Society of America.
Resumo:
Ultrashort-pulse lasers with spectral tuning capability have widespread applications in fields such as spectroscopy, biomedical research and telecommunications. Mode-locked fibre lasers are convenient and powerful sources of ultrashort pulses, and the inclusion of a broadband saturable absorber as a passive optical switch inside the laser cavity may offer tuneability over a range of wavelengths. Semiconductor saturable absorber mirrors are widely used in fibre lasers, but their operating range is typically limited to a few tens of nanometres, and their fabrication can be challenging in the 1.3-1.5 microm wavelength region used for optical communications. Single-walled carbon nanotubes are excellent saturable absorbers because of their subpicosecond recovery time, low saturation intensity, polarization insensitivity, and mechanical and environmental robustness. Here, we engineer a nanotube-polycarbonate film with a wide bandwidth (>300 nm) around 1.55 microm, and then use it to demonstrate a 2.4 ps Er(3+)-doped fibre laser that is tuneable from 1,518 to 1,558 nm. In principle, different diameters and chiralities of nanotubes could be combined to enable compact, mode-locked fibre lasers that are tuneable over a much broader range of wavelengths than other systems.
Resumo:
Colliding pulse modelocking is demonstrated for the first time in quantum dot lasers. Using 3.9 mm-long devices with a 245 pm-long central absorber, 7 ps pulses at a repetition rate of 20 GHz is obtained. For Gaussian pulses a time-bandwidth product close to the Fourier transform limit is determined. These results confirm the potential of quantum dot lasers for high repetition rate harmonic modelocking.
Resumo:
We present for the first time a comprehensive study of the static and dynamic properties of a coolerless tunable three-section DBR laser. Wavelength tuning and thermal drift under uncooled conditions are investigated. Variance of modulation bandwidth with temperature rise and wavelength control is studied, and then verified by uncooled direct modulation performance with clear open eye diagrams. Satisfactory direct modulation is demonstrated at bit rate of up to 6Gbit/s, which is believed to be the fastest out of devices of similar structure so far.
Resumo:
Sensor networks can be naturally represented as graphical models, where the edge set encodes the presence of sparsity in the correlation structure between sensors. Such graphical representations can be valuable for information mining purposes as well as for optimizing bandwidth and battery usage with minimal loss of estimation accuracy. We use a computationally efficient technique for estimating sparse graphical models which fits a sparse linear regression locally at each node of the graph via the Lasso estimator. Using a recently suggested online, temporally adaptive implementation of the Lasso, we propose an algorithm for streaming graphical model selection over sensor networks. With battery consumption minimization applications in mind, we use this algorithm as the basis of an adaptive querying scheme. We discuss implementation issues in the context of environmental monitoring using sensor networks, where the objective is short-term forecasting of local wind direction. The algorithm is tested against real UK weather data and conclusions are drawn about certain tradeoffs inherent in decentralized sensor networks data analysis. © 2010 The Author. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
Resumo:
This paper is concerned with the response statistics of a dynamic system that has random properties. The frequency-band-averaged energy of the system is considered, and a closed form expression is derived for the relative variance of this quantity. The expression depends upon three parameters: the modal overlap factor m, a bandwidth parameter B, and a parameter α that defines the nature of the loading (for example single point forcing or rain-on-the-roof loading). The result is applicable to any single structural component or acoustic volume, and a comparison is made here with simulation results for a mass loaded plate. Good agreement is found between the simulations and the theory. © 2003 Published by Elsevier Ltd.
Resumo:
A 2-D Hermite-Gaussian square launch is demonstrated to show improved systems capacity over multimode fiber links. It shows a bandwidth improvement over both center and offset launches and exhibits ±5 μm misalignment tolerance. © 2011 Optical Society of America.
Coarse optical orthogonal frequency division multiplexing for optical datacommunication applications
Resumo:
We propose a new low-cost solution using orthogonal transmission of non-return-to-zero and carrierless-amplitude-and-phase format data to realize a coarse OFDM transmission system. Using low bandwidth electronics and optoelectronic components, the system is demonstrated at 37.5Gb/s. © 2011 OSA.
Resumo:
We report a fibre-optic wireless distribution system, which allows antenna-remoting of a dual-service IEEE 802.11b/g WLAN operating at 2.4GHz up to 700m over low-bandwidth 62.5/125μm MMF using highly linear uncooled directly modulated laser diodes. © 2004 Optical Society of America.
Resumo:
4 bps/Hz 40 Gb/s carrierless amplitude and phase (CAP) modulation is investigated for next-generation datacommunication links. The 40 Gb/s link achieves double the length of a conventional NRZ scheme, despite using a low-bandwidth source. © 2011 Optical Society of America.
Resumo:
An 850 nm vertical-cavity surface-emitting laser is modulated at 32 Gb/s using pulse-amplitude modulation with four levels. Transmitter predistortion generates an optimized modulation waveform, which requires a receiver bandwidth of only 15 GHz. © 2011 OSA.