48 resultados para asymptotic suboptimality


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This technical note studies global asymptotic state synchronization in networks of identical systems. Conditions on the coupling strength required for the synchronization of nodes having a cyclic feedback structure are deduced using incremental dissipativity theory. The method takes advantage of the incremental passivity properties of the constituent subsystems of the network nodes to reformulate the synchronization problem as one of achieving incremental passivity by coupling. The method can be used in the framework of contraction theory to constructively build a contracting metric for the incremental system. The result is illustrated for a network of biochemical oscillators. © 2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Changepoint models are widely used to model the heterogeneity of sequential data. We present a novel sequential Monte Carlo (SMC) online Expectation-Maximization (EM) algorithm for estimating the static parameters of such models. The SMC online EM algorithm has a cost per time which is linear in the number of particles and could be particularly important when the data is representable as a long sequence of observations, since it drastically reduces the computational requirements for implementation. We present an asymptotic analysis for the stability of the SMC estimates used in the online EM algorithm and demonstrate the performance of this scheme using both simulated and real data originating from DNA analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Changepoint models are widely used to model the heterogeneity of sequential data. We present a novel sequential Monte Carlo (SMC) online Expectation-Maximization (EM) algorithm for estimating the static parameters of such models. The SMC online EM algorithm has a cost per time which is linear in the number of particles and could be particularly important when the data is representable as a long sequence of observations, since it drastically reduces the computational requirements for implementation. We present an asymptotic analysis for the stability of the SMC estimates used in the online EM algorithm and demonstrate the performance of this scheme using both simulated and real data originating from DNA analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we consider a network that is trying to reach consensus over the occurrence of an event while communicating over Additive White Gaussian Noise (AWGN) channels. We characterize the impact of different link qualities and network connectivity on consensus performance by analyzing both the asymptotic and transient behaviors. More specifically, we derive a tight approximation for the second largest eigenvalue of the probability transition matrix. We furthermore characterize the dynamics of each individual node. © 2009 AACC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A direct numerical simulation (DNS) database of freely propagating statistically planar turbulent premixed flames with a range of different turbulent Reynolds numbers has been used to assess the performance of algebraic flame surface density (FSD) models based on a fractal representation of the flame wrinkling factor. The turbulent Reynolds number Ret has been varied by modifying the Karlovitz number Ka and the Damköhler number Da independently of each other in such a way that the flames remain within the thin reaction zones regime. It has been found that the turbulent Reynolds number and the Karlovitz number both have a significant influence on the fractal dimension, which is found to increase with increasing Ret and Ka before reaching an asymptotic value for large values of Ret and Ka. A parameterisation of the fractal dimension is presented in which the effects of the Reynolds and the Karlovitz numbers are explicitly taken into account. By contrast, the inner cut-off scale normalised by the Zel'dovich flame thickness ηi/δz does not exhibit any significant dependence on Ret for the cases considered here. The performance of several algebraic FSD models has been assessed based on various criteria. Most of the algebraic models show a deterioration in performance with increasing the LES filter width. © 2012 Mohit Katragadda et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Developing a theoretical description of turbulent plumes, the likes of which may be seen rising above industrial chimneys, is a daunting thought. Plumes are ubiquitous on a wide range of scales in both the natural and the man-made environments. Examples that immediately come to mind are the vapour plumes above industrial smoke stacks or the ash plumes forming particle-laden clouds above an erupting volcano. However, plumes also occur where they are less visually apparent, such as the rising stream of warmair above a domestic radiator, of oil from a subsea blowout or, at a larger scale, of air above the so-called urban heat island. In many instances, not only the plume itself is of interest but also its influence on the environment as a whole through the process of entrainment. Zeldovich (1937, The asymptotic laws of freely-ascending convective flows. Zh. Eksp. Teor. Fiz., 7, 1463-1465 (in Russian)), Batchelor (1954, Heat convection and buoyancy effects in fluids. Q. J. R. Meteor. Soc., 80, 339-358) and Morton et al. (1956, Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. A, 234, 1-23) laid the foundations for classical plume theory, a theoretical description that is elegant in its simplicity and yet encapsulates the complex turbulent engulfment of ambient fluid into the plume. Testament to the insight and approach developed in these early models of plumes is that the essential theory remains unchanged and is widely applied today. We describe the foundations of plume theory and link the theoretical developments with the measurements made in experiments necessary to close these models before discussing some recent developments in plume theory, including an approach which generalizes results obtained separately for the Boussinesq and the non-Boussinesq plume cases. The theory presented - despite its simplicity - has been very successful at describing and explaining the behaviour of plumes across the wide range of scales they are observed. We present solutions to the coupled set of ordinary differential equations (the plume conservation equations) that Morton et al. (1956) derived from the Navier-Stokes equations which govern fluid motion. In order to describe and contrast the bulk behaviour of rising plumes from general area sources, we present closed-form solutions to the plume conservation equations that were achieved by solving for the variation with height of Morton's non-dimensional flux parameter Γ - this single flux parameter gives a unique representation of the behaviour of steady plumes and enables a characterization of the different types of plume. We discuss advantages of solutions in this form before describing extensions to plume theory and suggesting directions for new research. © 2010 The Author. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper the radial free jet which is produced by a continuous discharge of fluid from the space between two identical, parallel, circular, concentric discs into an infinite region of stagnant fluid of the same density and viscosity is investigated. Both laminar and turbulent jets are considered with analytical solutions being obtained near to the origin of the jet and at large distances along the jet. These asymptotic solutions are matched using a computational technique, and the numerical predictions show very good agreement with all the available experimental data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of turbulent Reynolds number, Ret, on the transport of scalar dissipation rate of reaction progress variable in the context of Reynolds averaged Navier-Stokes simulations have been analyzed using three-dimensional simplified chemistry-based direct numerical simulation (DNS) data of freely propagating turbulent premixed flames with different values of Ret. Scaling arguments have been used to explain the effects of Ret on the turbulent transport, scalar-turbulence interaction, and the combined reaction and molecular dissipation terms. Suitable modifications to the models for these terms have been proposed to account for Ret effects, and the model parameters include explicit Ret dependence. These expressions approach expected asymptotic limits for large values of Ret. However, turbulent Reynolds number Ret does not seem to have any major effects on the modeling of the term arising from density variation. Copyright © Taylor and Francis Group, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper establishes a global contraction property for networks of phase-coupled oscillators characterized by a monotone coupling function. The contraction measure is a total variation distance. The contraction property determines the asymptotic behavior of the network, which is either finite-time synchronization or asymptotic convergence to a splay state. © 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a Lyapunov design for the stabilization of collective motion in a planar kinematic model of N particles moving at constant speed. We derive a control law that achieves asymptotic stability of the splay state formation, characterized by uniform rotation of N evenly spaced particles on a circle. In designing the control law, the particle headings are treated as a system of coupled phase oscillators. The coupling function which exponentially stabilizes the splay state of particle phases is combined with a decentralized beacon control law that stabilizes circular motion of the particles. © 2005 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an analysis of the slow-peaking phenomenon, a pitfall of low-gain designs that imposes basic limitations to large regions of attraction in nonlinear control systems. The phenomenon is best understood on a chain of integrators perturbed by a vector field up(x, u) that satisfies p(x, 0) = 0. Because small controls (or low-gain designs) are sufficient to stabilize the unperturbed chain of integrators, it may seem that smaller controls, which attenuate the perturbation up(x, u) in a large compact set, can be employed to achieve larger regions of attraction. This intuition is false, however, and peaking may cause a loss of global controllability unless severe growth restrictions are imposed on p(x, u). These growth restrictions are expressed as a higher order condition with respect to a particular weighted dilation related to the peaking exponents of the nominal system. When this higher order condition is satisfied, an explicit control law is derived that achieves global asymptotic stability of x = 0. This stabilization result is extended to more general cascade nonlinear systems in which the perturbation p(x, v) v, v = (ξ, u) T, contains the state ξ and the control u of a stabilizable subsystem ξ = a(ξ, u). As an illustration, a control law is derived that achieves global stabilization of the frictionless ball-and-beam model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this book several streams of nonlinear control theory are merged and di- rected towards a constructive solution of the feedback stabilization problem. Analytic, geometric and asymptotic concepts are assembled as design tools for a wide variety of nonlinear phenomena and structures. Di®erential-geometric concepts reveal important structural properties of nonlinear systems, but al- low no margin for modeling errors. To overcome this de¯ciency, we combine them with analytic concepts of passivity, optimality and Lyapunov stability. In this way geometry serves as a guide for construction of design procedures, while analysis provides robustness tools which geometry lacks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction of a turbulent eddy with a semi-infinite, poroelastic edge is examined with respect to the effects of both elasticity and porosity on the efficiency of aerodynamic noise generation. The edge is modelled as a thin plate poroelastic plate, which is known to admit fifth-, sixth-, and seventh-power noise dependences on a characteristic velocity U of the turbulent eddy. The associated acoustic scattering problem is solved using the Wiener-Hopf technique for the case of constant plate properties. For the special cases of porous-rigid and impermeable-elastic plate conditions, asymptotic analysis of the Wiener- Hopf kernel function furnishes the parameter groups and their ranges where U5, U6, and U7 behaviours are expected to occur. Results from this analysis attempt to help guide the search for passive edge treatments to reduce trailing-edge noise that are inspired by the wing features of silently flying owls. Furthermore, the appropriateness of the present model to the owl noise problem is discussed with respect to the acoustic frequencies of interest, wing chord-lengths, and foraging behaviour across a representative set of owl species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A numerical study is presented showing the structural response and sound radiation from a range of thin shell structures excited by a point force: a baffled flat plate, a sphere, a family of spheroids and a family of closed circular cylinders. All the structures have the same material properties, thickness and total surface area so the asymptotic modal density is the same. Dramatic differences are shown in the total radiated sound power for the different shells. It was already known that the flat plate and the sphere behave very differently. These results show that the cylinders and, particularly, the spheroids show patterns that are not intermediate between the two but instead display new features: in certain frequency ranges the radiated sound power can be at least an order of magnitude greater than either the plate or the sphere. © 2013 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract A theoretical model is developed for the sound scattered when a sound wave is incident on a cambered aerofoil at non-zero angle of attack. The model is based on the linearization of the Euler equations about a steady subsonic flow, and is an adaptation of previous work which considered incident vortical disturbances. Only high-frequency sound waves are considered. The aerofoil thickness, camber and angle of attack are restricted such that the steady flow past the aerofoil is a small perturbation to a uniform flow. The singular perturbation analysis identifies asymptotic regions around the aerofoil; local 'inner' regions, which scale on the incident wavelength, at the leading and trailing edges of the aerofoil; Fresnel regions emanating from the leading and trailing edges of the aerofoil due to the coalescence of singularities and points of stationary phase; a wake transition region downstream of the aerofoil leading and trailing edge; and an outer region far from the aerofoil and wake. An acoustic boundary layer on the aerofoil surface and within the transition region accounts for the effects of curvature. The final result is a uniformly-valid solution for the far-field sound; the effects of angle of attack, camber and thickness are investigated. © 2013 Cambridge University Press.