39 resultados para alternating domains
Resumo:
It is widely believed that the second-generation high-temperature superconducting (2G HTS) tapes with magnetic substrates suffer higher transport loss compared to those with non-magnetic substrates. To test this, we prepared two identical coils with magnetic and non-magnetic substrates, respectively. The experimental result was rather surprising that they generated roughly the same amount of transport loss. We used finite element method to understand this result. It is found that, unlike in the single tape where the magnetic field-dependent critical current characteristic can be neglected and the effect of magnetic substrate dominates, the magnetic field-dependent critical current characteristic of 2G tape plays as an equally important role as magnetic substrate in terms of HTS coils. © 2012 American Institute of Physics.
Resumo:
The unique response of ferroic materials to external excitations facilitates them for diverse technologies, such as nonvolatile memory devices. The primary driving force behind this response is encoded in domain switching. In bulk ferroics, domains switch in a two-step process: nucleation and growth. For ferroelectrics, this can be explained by the Kolmogorov-Avrami-Ishibashi (KAI) model. Nevertheless, it is unclear whether domains remain correlated in finite geometries, as required by the KAI model. Moreover, although ferroelastic domains exist in many ferroelectrics, experimental limitations have hindered the study of their switching mechanisms. This uncertainty limits our understanding of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from reaching their full technological potential. Here we used piezoresponse force microscopy to study the switching mechanisms of ferroelectric-ferroelastic domains in thin polycrystalline Pb 0.7Zr0.3TiO3 films at the nanometer scale. We have found that switched biferroic domains can nucleate at multiple sites with a coherence length that may span several grains, and that nucleators merge to form mesoscale domains, in a manner consistent with that expected from the KAI model. © 2012 American Physical Society.
Resumo:
Ure2p is the protein determinant of the Saccharomyces cerevisiae prion state [URE3]. Constitutive overexpression of the HSP70 family member SSA1 cures cells of [URE3]. Here, we show that Ssa1p increases the lag time of Ure2p fibril formation in vitro in the presence or absence of nucleotide. The presence of the HSP40 co-chaperone Ydj1p has an additive effect on the inhibition of Ure2p fibril formation, whereas the Ydj1p H34Q mutant shows reduced inhibition alone and in combination with Ssa1p. In order to investigate the structural basis of these effects, we constructed and tested an Ssa1p mutant lacking the ATPase domain, as well as a series of C-terminal truncation mutants. The results indicate that Ssa1p can bind to Ure2p and delay fibril formation even in the absence of the ATPase domain, but interaction of Ure2p with the substrate-binding domain is strongly influenced by the C-terminal lid region. Dynamic light scattering, quartz crystal microbalance assays, pull-down assays and kinetic analysis indicate that Ssa1p interacts with both native Ure2p and fibril seeds, and reduces the rate of Ure2p fibril elongation in a concentration-dependent manner. These results provide new insights into the structural and mechanistic basis for inhibition of Ure2p fibril formation by Ssa1p and Ydj1p.
Resumo:
Silver paint has been tested as a soldering agent for DyBaCuO single-domain welding. Junctions have been manufactured on Dy-Ba-Cu-O single-domains cut either along planes parallel to the c-axis or along the ab-planes. Microstructural and superconducting characterisations of the samples have been performed. For both types of junctions, the microstructure in the joined area is very clean: no secondary phase or Ag particles segregation has been observed. Electrical and magnetic measurements for all configurations of interest are reported $\rho(T)$ curves, and Hall probe mapping). The narrow resistive superconducting transition reported for all configurations shows that the artificial junction does not affect significantly the measured superconducting properties of the material.
Resumo:
An infiltration and growth process is here used as an alternative to the classical top-seeded melt-textured growth process for the production of Dy-123 single-domains with finely dispersed small size Dy-211 particles. The starting materials are the 211-particles and a barium and copper rich liquid phase precursor. The infiltration and growth process allows for controlling both the spatial and size distribution of the 211-particles in the final superconducting 123-single-domain. The main parameters (set-ups, maximum processing temperature with respect to the peritectic temperature, nature of reactant, porosity of the 211-preform) of the infiltration and growth process are discussed. Moreover, different processes of chimie douce are shown in order to produce Dy-211 particles with controlled shape and size, particles that can be used as precursors for the infiltration and growth process. © 2005 IOP Publishing Ltd.
Resumo:
Motivated by recent observations of fish schools, we study coordinated group motion for individuals with oscillatory speed. Neighbors that have speed oscillations with common frequency, amplitude and average but different phases, move together in alternating spatial patterns, taking turns being towards the front, sides and back of the group. We propose a model and control laws to investigate the connections between these spatial dynamics, communication when sensing is range or direction limited, and convergence of coordinated group motions. ©2007 IEEE.
Resumo:
Ure2p is the protein determinant of the Saccharomyces cerevisiae prion state [URE3]. Constitutive overexpression of the HSP70 family member SSA1 cures cells of [URE3]. Here, we show that Ssa1p increases the lag time of Ure2p fibril formation in vitro in the presence or absence of nucleotide. The presence of the HSP40 co-chaperone Ydj1p has an additive effect on the inhibition of Ure2p fibril formation, whereas the Ydj1p H34Q mutant shows reduced inhibition alone and in combination with Ssa1p. In order to investigate the structural basis of these effects, we constructed and tested an Ssa1p mutant lacking the ATPase domain, as well as a series of C-terminal truncation mutants. The results indicate that Ssa1p can bind to Ure2p and delay fibril formation even in the absence of the ATPase domain, but interaction of Ure2p with the substrate-binding domain is strongly influenced by the C-terminal lid region. Dynamic light scattering, quartz crystal microbalance assays, pull-down assays and kinetic analysis indicate that Ssa1p interacts with both native Ure2p and fibril seeds, and reduces the rate of Ure2p fibril elongation in a concentration-dependent manner. These results provide new insights into the structural and mechanistic basis for inhibition of Ure2p fibril formation by Ssa1p and Ydj1p.
Resumo:
The construction of protein-based photoelectrochemical cells that produce a variety of alternating currents in response to discontinuous illumination is reported. The photovoltaic component is a protein complex from the purple photosynthetic bacterium Rhodobacter sphaeroides which catalyses photochemical charge separation with a high quantum yield. Photoelectrochemical cells formed from this protein, a mobile redox mediator and a counter electrode formed from cobalt disilicide, titanium nitride, platinum, or multi-walled carbon nanotubes (MWCNT) generate a direct current during continuous illumination and an alternating current with different characteristics during discontinuous illumination. In particular, the use of superhydrophobic MWCNT as the back electrode results in a near symmetrical forward and reverse current upon light on and light off, respectively. The symmetry of the AC output of these cells is correlated with the wettability of the counter electrode. Potential applications of a hybrid biological/synthetic solar cell capable of generating an approximately symmetrical alternating current are discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.