50 resultados para Westminster Assembly (1643-1652).
Resumo:
We report selective tunnelling through a nanographene intermolecular tunnel junction achieved via scanning tunnelling microscope tip functionalization with hexa-peri-hexabenzocoronene (HBC) molecules. This leads to an offset in the alignment between the energy levels of the tip and the molecular assembly, resulting in the imaging of a variety of distinct charge density patterns in the HBC assembly, not attainable using a bare metallic tip. Different tunnelling channels can be selected by the application of an electric field in the tunnelling junction, which changes the condition of the HBC on the tip. Density functional theory-based calculations relate the imaged HBC patterns to the calculated molecular orbitals at certain energy levels. These patterns bear a close resemblance to the π-orbital states of the HBC molecule calculated at the relevant energy levels, mainly below the Fermi energy of HBC. This correlation demonstrates the ability of an HBC functionalized tip as regards accessing an energy range that is restricted to the usual operating bias range around the Fermi energy with a normal metallic tip at room temperature. Apart from relating to molecular orbitals, some patterns could also be described in association with the Clar aromatic sextet formula. Our observations may help pave the way towards the possibility of controlling charge transport between organic interfaces.
Resumo:
Nacre is a technologically remarkable organic-inorganic composite biomaterial. It consists of an ordered multilayer structure of crystalline calcium carbonate platelets separated by porous organic layers. This microstructure exhibits both optical iridescence and mechanical toughness, which transcend those of its constituent components. Replication of nacre is essential for understanding this complex biomineral, and paves the way for tough coatings fabricated from cheap abundant materials. Fabricating a calcitic nacre imitation with biologically similar optical and mechanical properties will likely require following all steps taken in biogenic nacre synthesis. Here we present a route to artificial nacre that mimics the natural layer-by-layer approach to fabricate a hierarchical crystalline multilayer material. Its structure-function relationship was confirmed by nacre-like mechanical properties and striking optical iridescence. Our biomimetic route uses the interplay of polymer-mediated mineral growth, combined with layer-by-layer deposition of porous organic films. This is the first successful attempt to replicate nacre, using CaCO(3).
Resumo:
Virtual assembly environment (VAE) technology has the great potential for benefiting the manufacturing applications in industry. Usability is an important aspect of the VAE. This paper presents the usability evaluation of a developed multi-sensory VAE. The evaluation is conducted by using its three attributes: (a) efficiency of use; (b) user satisfaction; and (c) reliability. These are addressed by using task completion times (TCTs), questionnaires, and human performance error rates (HPERs), respectively. A peg-in-a-hole and a Sener electronic box assembly task have been used to perform the experiments, using sixteen participants. The outcomes showed that the introduction of 3D auditory and/or visual feedback could improve the usability. They also indicated that the integrated feedback (visual plus auditory) offered better usability than either feedback used in isolation. Most participants preferred the integrated feedback to either feedback (visual or auditory) or no feedback. The participants' comments demonstrated that nonrealistic or inappropriate feedback had negative effects on the usability, and easily made them feel frustrated. The possible reasons behind the outcomes are also analysed. © 2007 ACADEMY PUBLISHER.
Resumo:
Surfaces coated with nanoscale filaments such as silicon nanowires and carbon nanotubes are potentially compelling for high-performance battery and capacitor electrodes, photovoltaics, electrical interconnects, substrates for engineered cell growth, dry adhesives, and other smart materials. However, many of these applications require a wet environment or involve wet processing during their synthesis. The capillary forces introduced by these wet environments can lead to undesirable aggregation of nanoscale filaments, but control of capillary forces can enable manipulation of the filaments into discrete aggregates and novel hierarchical structures. Recent studies suggest that the elastocapillary self-assembly of nanofilaments can be a versatile and scalable means to build complex and robust surface architectures. To enable a wider understanding and use of elastocapillary self-assembly as a fabrication technology, we give an overview of the underlying fundamentals and classify typical implementations and surface designs for nanowires, nanotubes, and nanopillars made from a wide variety of materials. Finally, we discuss exemplary applications and future opportunities to realize new engineered surfaces by the elastocapillary self-assembly of nanofilaments. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Hybrid nanostructured materials can exhibit different properties than their constituent components, and can enable decoupled engineering of energy conversion and transport functions. Novel means of building hybrid assemblies of crystalline C 60 and carbon nanotubes (CNTs) are presented, wherein aligned CNT films direct the crystallization and orientation of C 60 rods from solution. In these hybrid films, the C 60 rods are oriented parallel to the direction of the CNTs throughout the thickness of the film. High-resolution imaging shows that the crystals incorporate CNTs during growth, yet grazing-incidence X-ray diffraction (GIXD) shows that the crystal structure of the C 60 rods is not perturbed by the CNTs. Growth kinetics of the C 60 rods are enhanced 8-fold on CNTs compared to bare Si, emphasizing the importance of the aligned, porous morphology of the CNT films as well as the selective surface interactions between C 60 and CNTs. Finally, it is shown how hybrid C 60-CNT films can be integrated electrically and employed as UV detectors with a high photoconductive gain and a responsivity of 10 5 A W -1 at low biases (± 0.5 V). The finding that CNTs can induce rapid, directional crystallization of molecules from solution may have broader implications to the science and applications of crystal growth, such as for inorganic nanocrystals, proteins, and synthetic polymers. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
This paper reports on fuel design optimization of a PWR operating in a self sustainable Th-233U fuel cycle. Monte Carlo simulated annealing method was used in order to identify the fuel assembly configuration with the most attractive breeding performance. In previous studies, it was shown that breeding may be achieved by employing heterogeneous Seed-Blanket fuel geometry. The arrangement of seed and blanket pins within the assemblies may be determined by varying the designed parameters based on basic reactor physics phenomena which affect breeding. However, the amount of free parameters may still prove to be prohibitively large in order to systematically explore the design space for optimal solution. Therefore, the Monte Carlo annealing algorithm for neutronic optimization is applied in order to identify the most favorable design. The objective of simulated annealing optimization is to find a set of design parameters, which maximizes some given performance function (such as relative period of net breeding) under specified constraints (such as fuel cycle length). The first objective of the study was to demonstrate that the simulated annealing optimization algorithm will lead to the same fuel pins arrangement as was obtained in the previous studies which used only basic physics phenomena as guidance for optimization. In the second part of this work, the simulated annealing method was used to optimize fuel pins arrangement in much larger fuel assembly, where the basic physics intuition does not yield clearly optimal configuration. The simulated annealing method was found to be very efficient in selecting the optimal design in both cases. In the future, this method will be used for optimization of fuel assembly design with larger number of free parameters in order to determine the most favorable trade-off between the breeding performance and core average power density.
Resumo:
This study explores the basic possibility of achieving a self-sustainable Th-U233 fuel cycle that can be adopted in the current generation of Pressurized Water Reactors. This study outlines some fuel design strategies to achieve (or to approach as closely as possible) a sustainable fuel cycle. Major design tradeoffs in the core design are discussed. Preliminary neutronic analysis performed on the fuel assembly level with BOXER computer code suggests that net breeding of U233 is feasible in principle within a typical PWR operating envelope. However, some reduction in the core power density and/or shorter than typical fuel cycle length would most likely be required in order to achieve such performance.
Resumo:
This work examines the basic feasibility of the net-zero-balance TRU multi-recycling concept in which trivalent lanthanide fission products (Ln(III) ) are not separated from trivalent actinides (An(III)). The TRU together with Eu and Gd isotopes are recycled in a standard PWR using Combined Non-Fertile and UO2 (CONFU) assembly design. The assembly assumes a heterogeneous structure where about 20% of U02 fuel pins on the assembly periphery are replaced with Inert Matrix Fuel (IMF) pins hosting TRU, Gd, and Eu generated in the previous cycles. The 2-D neutronic analysis show potential feasibility of Ln / An recycling in PWR using CONFU assembly. Recycling of Ln reduces the fuel cycle length by about 30 effective full power days (EFPD) and TRU destruction efficiency by about 5%. Power peaking factors and reactivity feedback coefficients are close to those of CONFU assembly without Ln recycling.
Resumo:
A new combined Non Fertile and Uranium (CONFU) fuel assembly is proposed to limit the actinides that need long-term high-level waste storage from the pressurized water reactor (PWR) fuel cycle. In the CONFU assembly concept, ∼20% of the UO2 fuel pins are replaced with fertile free fuel hosting the transuranic elements (TRUs) generated in the previous cycle. This leads to a fuel cycle sustainable with respect to net TRU generation, and the amount and radiotoxicity of the nuclear waste can be significantly reduced in comparison with the conventional once-through UO2 fuel cycle. It is shown that under the constraints of acceptable power peaking limits, the CONFU assembly exhibits negative reactivity feedback coefficients comparable in values to those of the reference UO2 fuel. Feasibility of the PWR core operation and control with complete TRU recycle has been shown based on full-core three-dimensional neutronic simulation. However, gradual buildup of small amounts of Cm and Cf challenges fuel reprocessing and fabrication due to the high spontaneous fission rates of these nuclides and heat generation by some Pu, Am, and Cm isotopes. Feasibility of the processing steps becomes more attainable if the time between discharge and reprocessing is 20 yr or longer.
Resumo:
In this article, we examine the phenomenon of single-crystal halide salt wire growth at the surface of porous materials. We report the use of a single-step casting technique with a supramolecular self-assembly gel matrix that upon drying leads to the growth of single-crystal halide (e.g., NaCl, KCl, and KI) nanowires with diameters ~130-200 nm. We demonstrate their formation using electron microscopy and electron-dispersive X-ray spectroscopy, showing that the supramolecular gel stabilizes the growth of these wires by facilitating a diffusion-driven base growth mechanism. Critically, we show that standard non-supramolecular gels are unable to facilitate nanowire growth. We further show that these nanowires can be grown by seeding, forming nanocrystal gardens. This study helps understand the possible prefunctionalization of membranes to stimulate ion-specific filters or salt efflorescence suppressors, while also providing a novel route to nanomaterial growth.