51 resultados para Vegetal extraction
Resumo:
The location of a flame front is often taken as the point of maximum OH gradient. Planar laser-induced fluorescence of OH can be used to obtain the flame front by extracting the points of maximum gradient. This operation is typically performed using an edge detection algorithm. The choice of operating parameters a priori poses significant problems of robustness when handling images with a range of signal-to-noise ratios. A statistical method of parameter selection originating in the image processing literature is detailed, and its merit for this application is demonstrated. A reduced search space method is proposed to decrease computational cost and render the technique viable for large data sets. This gives nearly identical output to the full method. These methods demonstrate substantial decreases in data rejection compared to the use of a priori parameters. These methods are viable for any application where maximum gradient contours must be accurately extracted from images of species or temperature, even at very low signal-to-noise ratios.
Resumo:
This paper presents a practical destruction-free parameter extraction methodology for a new physics-based circuit simulator buffer-layer Integrated Gate Commutated Thyristor (IGCT) model. Most key parameters needed for this model can be extracted by one simple clamped inductive-load switching experiment. To validate this extraction method, a clamped inductive load switching experiment was performed, and corresponding simulations were carried out by employing the IGCT model with parameters extracted through the presented methodology. Good agreement has been obtained between the experimental data and simulation results.
Resumo:
This paper proposes a method for extracting reliable architectural characteristics from complex porous structures using micro-computed tomography (μCT) images. The work focuses on a highly porous material composed of a network of fibres bonded together. The segmentation process, allowing separation of the fibres from the remainder of the image, is the most critical step in constructing an accurate representation of the network architecture. Segmentation methods, based on local and global thresholding, were investigated and evaluated by a quantitative comparison of the architectural parameters they yielded, such as the fibre orientation and segment length (sections between joints) distributions and the number of inter-fibre crossings. To improve segmentation accuracy, a deconvolution algorithm was proposed to restore the original images. The efficacy of the proposed method was verified by comparing μCT network architectural characteristics with those obtained using high resolution CT scans (nanoCT). The results indicate that this approach resolves the architecture of these complex networks and produces results approaching the quality of nanoCT scans. The extracted architectural parameters were used in conjunction with an affine analytical model to predict the axial and transverse stiffnesses of the fibre network. Transverse stiffness predictions were compared with experimentally measured values obtained by vibration testing. © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
This paper focuses on the PSpice model of SiC-JFET element inside a SiCED cascode device. The device model parameters are extracted from the I-V and C-V characterization curves. In order to validate the model, an inductive test rig circuit is designed and tested. The switching loss is estimated both using oscilloscope and calorimeter. These results are found to be in good agreement with the simulated results.
Resumo:
Triacylglycerols (TAGs) from microalgae have the potential to be used for biodiesel, but several technical and economic hurdles have to be overcome. A major challenge is efficient extraction of intracellular TAGs from algae. Here we investigate the use of enzymes to deconstruct algal cell walls/membranes. We describe a rapid and simple assay that can assess the efficacy of different enzyme treatments on TAG-containing algae. By this means crude papain and bromelain were found to be effective in releasing TAGs from the diatom Phaeodactylum tricornutum, most likely because of their cysteine protease activity. Pre-treating algal biomass with crude papain enabled complete extraction of TAGs using heptane/isopropyl alcohol. Heptane as a single solvent was also effective, although complete recovery of TAG was not obtained. Economic implications of these findings are discussed, with the aim to reduce the complexity of, and energy needed in, TAG extraction.
Resumo:
Most of the manual labor needed to create the geometric building information model (BIM) of an existing facility is spent converting raw point cloud data (PCD) to a BIM description. Automating this process would drastically reduce the modeling cost. Surface extraction from PCD is a fundamental step in this process. Compact modeling of redundant points in PCD as a set of planes leads to smaller file size and fast interactive visualization on cheap hardware. Traditional approaches for smooth surface reconstruction do not explicitly model the sparse scene structure or significantly exploit the redundancy. This paper proposes a method based on sparsity-inducing optimization to address the planar surface extraction problem. Through sparse optimization, points in PCD are segmented according to their embedded linear subspaces. Within each segmented part, plane models can be estimated. Experimental results on a typical noisy PCD demonstrate the effectiveness of the algorithm.