39 resultados para Union Society, Savannah, Ga.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the resettlement process of a community devastated by annual floods, to newly constructed housing in Pune, India. The relocation from Kamgar Putala slum to a housing society at Hadapsar was organized by a community-led NGO partnership in 2004. The housing development was coordinated by the local NGO Shelter Associates with significant community participation. The housing has been revisited in 2010 to evaluate the sustainability of the resettlement project’s delivery model via stakeholder perception. The process of organizing for resettlement after natural disaster is described along with the implementation and evaluation of the new housing nearly six years after initial occupation. The strong partnership approach overcame a series of political and financial hurdles at various stages of the relocation project. The story of resettling Kamgar Putala is detailed alongside an outline of the current political climate for an alternative slum-upgrading policy in India and Pune. The advantages of an empowered community supported by an influential local NGO demonstrate a commendable team effort which has tackled the threat of floods. The paper highlights the merits of a community-led partnership approach to housing development for achieving sustainable urban development as well as the alleviation of poverty in a developing context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stress/recovery measurements demonstrate that even high-performance passivated In-Zn-O/ Ga-In-Zn-O thin film transistors with excellent in-dark stability suffer from light-bias induced threshold voltage shift (ΔV T) and defect density changes. Visible light stress leads to ionisation of oxygen vacancy sites, causing persistent photoconductivity. This makes the material act as though it was n-doped, always causing a negative threshold voltage shift under strong illumination, regardless of the magnitude and polarity of the gate bias.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stress/recovery measurements demonstrate that even highperformance passivated In-Zn-O/ Ga-In-Zn-O thin film transistors with excellent in-dark stability suffer from light-bias induced threshold voltage shift (ΔV T) and defect density changes. Visible light stress leads to ionisation of oxygen vacancy sites, causing persistent photoconductivity. This makes the material act as though it was n-doped, always causing a negative threshold voltage shift under strong illumination, regardless of the magnitude and polarity of the gate bias. © 2011 SID.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To explore the machining characteristics of glassy carbon by focused ion beam (FIB), particles induced by FIB milling on glassy carbon have been studied in the current work. Nano-sized particles in the range of tens of nanometers up to 400 nm can often be found around the area subject to FIB milling. Two ion beam scanning modes - slow single scan and fast repetitive scan - have been tested. Fewer particles are found in single patterns milled in fast repetitive scan mode. For a group of test patterns milled in a sequence, it was found that a greater number of particles were deposited around sites machined early in the sequence. In situ EDX analysis of the particles showed that they were composed of C and Ga. The formation of particles is related to the debris generated at the surrounding areas, the low melting point of gallium used as FIB ion source and the high contact angle of gallium on glassy carbon induces de-wetting of Ga and the subsequent formation of Ga particles. Ultrasonic cleaning can remove over 98% of visible particles. The surface roughness (Ra) of FIB milled areas after cleaning is less than 2 nm. © 2010.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The yrast sequence of the neutron-rich dysprosium isotope Dy168 has been studied using multinucleon transfer reactions following collisions between a 460-MeV Se82 beam and an Er170 target. The reaction products were identified using the PRISMA magnetic spectrometer and the γ rays detected using the CLARA HPGe-detector array. The 2+ and 4+ members of the previously measured ground-state rotational band of Dy168 have been confirmed and the yrast band extended up to 10+. A tentative candidate for the 4+→2+ transition in Dy170 was also identified. The data on these nuclei and on the lighter even-even dysprosium isotopes are interpreted in terms of total Routhian surface calculations and the evolution of collectivity in the vicinity of the proton-neutron valence product maximum is discussed. © 2010 The American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the resettlement process of a community devastated by annual floods, to newly constructed housing in Pune, India. The relocation from Kamgar Putala slum to a housing society at Hadapsar was organized by a community-led NGO partnership in 2004. The housing development was coordinated by the local NGO Shelter Associates with significant community participation. The housing has been revisited in 2010 to evaluate the sustainability of the resettlement project's delivery model via stakeholder perception. The process of organizing for resettlement after natural disaster is described along with the implementation and evaluation of the new housing nearly six years after initial occupation. The strong partnership approach overcame a series of political and financial hurdles at various stages of the relocation project. The story of resettling Kamgar Putala is detailed alongside an outline of the current political climate for an alternative slum-upgrading policy in India and Pune. The advantages of an empowered community supported by an influential local NGO demonstrate a commendable team effort which has tackled the threat of floods. The paper highlights the merits of a community-led partnership approach to housing development for achieving sustainable urban development as well as the alleviation of poverty in a developing context. © 2011 Taylor & Francis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical and structural properties of binary and ternary III-V nanowires including GaAs, InP, In(Ga)As, Al(Ga)As, and GaAs(Sb) nanowires by metal-organic chemical vapour deposition are investigated, Au colloidal nanoparticles are employed to catalyze nanowire growth. Zinc blende or wurtzite crystal structures with some stacking faults are observed for these nanowires by high resolution transmission electron microscope. In addition, the properties of heterostructure nanowires including GaAs-AlGaAs core-shell nanowires, GaAs-InAs nanowires, and GaAs-GaSb nanowires are reported. Single nanowire luminescence properties from optically bright InP nanowires are reported. Interesting phenomena such as two-temperature procedure, nanowire height enhancement of isolated ternary InGaAs nanowires, kinking effect of InAs-GaAs heterostructure nanowires, and unusual growth property of GaAs-GaSb heterostructure nanowires are investigated. These nanowires will play an essential role in future optoelectronic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Orthopedic tissue engineering requires biomaterials with robust mechanics as well as adequate porosity and permeability to support cell motility, proliferation, and new extracellular matrix (ECM) synthesis. While collagen-glycosaminoglycan (CG) scaffolds have been developed for a range of tissue engineering applications, they exhibit poor mechanical properties. Building on previous work in our lab that described composite CG biomaterials containing a porous scaffold core and nonporous CG membrane shell inspired by mechanically efficient core-shell composites in nature, this study explores an approach to improve cellular infiltration and metabolic health within these core-shell composites. We use indentation analyses to demonstrate that CG membranes, while less permeable than porous CG scaffolds, show similar permeability to dense materials such as small intestine submucosa (SIS). We also describe a simple method to fabricate CG membranes with organized arrays of microscale perforations. We demonstrate that perforated membranes support improved tenocyte migration into CG scaffolds, and that migration is enhanced by platelet-derived growth factor BB-mediated chemotaxis. CG core-shell composites fabricated with perforated membranes display scaffold-membrane integration with significantly improved tensile properties compared to scaffolds without membrane shells. Finally, we show that perforated membrane-scaffold composites support sustained tenocyte metabolic activity as well as improved cell infiltration and reduced expression of hypoxia-inducible factor 1α compared to composites with nonperforated membranes. These results will guide the design of improved biomaterials for tendon repair that are mechanically competent while also supporting infiltration of exogenous cells and other extrinsic mediators of wound healing.