61 resultados para Uncertainty of forecasts
Resumo:
Most behavioral tasks have time constraints for successful completion, such as catching a ball in flight. Many of these tasks require trading off the time allocated to perception and action, especially when only one of the two is possible at any time. In general, the longer we perceive, the smaller the uncertainty in perceptual estimates. However, a longer perception phase leaves less time for action, which results in less precise movements. Here we examine subjects catching a virtual ball. Critically, as soon as subjects began to move, the ball became invisible. We study how subjects trade-off sensory and movement uncertainty by deciding when to initiate their actions. We formulate this task in a probabilistic framework and show that subjects' decisions when to start moving are statistically near optimal given their individual sensory and motor uncertainties. Moreover, we accurately predict individual subject's task performance. Thus we show that subjects in a natural task are quantitatively aware of how sensory and motor variability depend on time and act so as to minimize overall task variability.
Resumo:
Uncertainty is ubiquitous in our sensorimotor interactions, arising from factors such as sensory and motor noise and ambiguity about the environment. Setting it apart from previous theories, a quintessential property of the Bayesian framework for making inference about the state of world so as to select actions, is the requirement to represent the uncertainty associated with inferences in the form of probability distributions. In the context of sensorimotor control and learning, the Bayesian framework suggests that to respond optimally to environmental stimuli the central nervous system needs to construct estimates of the sensorimotor transformations, in the form of internal models, as well as represent the structure of the uncertainty in the inputs, outputs and in the transformations themselves. Here we review Bayesian inference and learning models that have been successful in demonstrating the sensitivity of the sensorimotor system to different forms of uncertainty as well as recent studies aimed at characterizing the representation of the uncertainty at different computational levels.
Resumo:
At medium to high frequencies the dynamic response of a built-up engineering system, such as an automobile, can be sensitive to small random manufacturing imperfections. Ideally the statistics of the system response in the presence of these uncertainties should be computed at the design stage, but in practice this is an extremely difficult task. In this paper a brief review of the methods available for the analysis of systems with uncertainty is presented, and attention is then focused on two particular "non- parametric" methods: statistical energy analysis (SEA), and the hybrid method. The main governing equations are presented, and a number of example applications are considered, ranging from academic benchmark studies to industrial design studies. © 2009 IOP Publishing Ltd.
Resumo:
Design work involves uncertainty that arises from, and influences, the progressive development of solutions. This paper analyses the influences of evolving uncertainty levels on the design process. We focus on uncertainties associated with choosing the values of design parameters, and do not consider in detail the issues that arise when parameters must first be identified. Aspects of uncertainty and its evolution are discussed, and a new task-based model is introduced to describe process behaviour in terms of changing uncertainty levels. The model is applied to study two process configuration problems based on aircraft wing design: one using an analytical solution and one using Monte-Carlo simulation. The applications show that modelling uncertainty levels during design can help assess management policies, such as how many concepts should be considered during design and to what level of accuracy. © 2011 Springer-Verlag.