59 resultados para UNDOPED INP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use polarization-resolved and temperature-dependent photoluminescence of single zincblende (ZB) (cubic) and wurtzite (WZ) (hexagonal) InP nanowires to probe differences in selection rules and bandgaps between these two semiconductor nanostructures. The WZ nanowires exhibit a bandgap 80 meV higher in energy than the ZB nanowires. The temperature dependence of the PL is similar but not identical for the WZ and ZB nanowires. We find that ZB nanowires exhibit strong polarization parallel to the nanowire axis, while the WZ nanowires exhibit polarized emission perpendicular to the nanowire axis. This behavior is interpreted in terms of the different selection rules for WZ and ZB crystal structures. © 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the dynamics of hot charge carriers in InP nanowire ensembles containing a range of densities of zinc-blende inclusions along the otherwise wurtzite nanowires. From time-dependent photoluminescence spectra, we extract the temperature of the charge carriers as a function of time after nonresonant excitation. We find that charge-carrier temperature initially decreases rapidly with time in accordance with efficient heat transfer to lattice vibrations. However, cooling rates are subsequently slowed and are significantly lower for nanowires containing a higher density of stacking faults. We conclude that the transfer of charges across the type II interface is followed by release of additional energy to the lattice, which raises the phonon bath temperature above equilibrium and impedes the carrier cooling occurring through interaction with such phonons. These results demonstrate that type II heterointerfaces in semiconductor nanowires can sustain a hot charge-carrier distribution over an extended time period. In photovoltaic applications, such heterointerfaces may hence both reduce recombination rates and limit energy losses by allowing hot-carrier harvesting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Non-hydrogenated tetrahedral amorphous carbon (ta-C) has shown superior field emission characteristics. The understanding of the emission mechanism has been hindered by the lack of any directly measured data on the band offsets between ta-C and Si. In this paper results from direct in situ X-ray photoemission spectroscopy (XPS) measurements of the band-offset between ta-C and Si are reported. The measurements were carried out using a filtered cathodic vacuum arc (FCVA) deposition system attached directly to an ultra-high vacuum (UHV) XPS chamber via a load lock chamber. Repeated XPS measurements were carried out after monolayer depositions on in situ cleaned Si substrates. The total film thickness for each set of measurements was approximately 5 nm. Analysis of the data from undoped ta-C on n and p Si show the unexpected result that the conduction band barrier between Si and ta-C remains around 1.0 eV, but that the valence band barrier changes from 0.7 to 0.0 eV. The band line up derived from these barriers suggests that the Fermi level in the ta-C lies 0.3 eV above the valence band on both p and n+Si. The heterojunction barriers when ta-C is doped with nitrogen are also presented. The implications of the heterojunction energy barrier heights for field emission from ta-C are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first demonstration of a directly modulated microring laser array is presented for on-off keyed, wavelength- division- multiplexed fiber-optic data transmission. GaInAsP-InP microring resonators oscillating at separate wavelengths in the 1.5-μm band are vertically coupled to a common passive waveguide bus, which is fabricated on the reverse side of the InP membrane. Two microrings defined with radii for a wavelength channel separation of 6 nm have been assessed for both individual and simultaneous operation. Negligible power penalty (<0.2 dB) is observed for wavelength-division-multiplexed operation with and without transmission over a 25-km fiber span in a manner which indicates low crosstalk between the integrated sources. A device area of less than 0.12 mm2 per microring on a common passive bus allows a highly scalable solution for short-reach wavelength-multiplexed links. © 2008 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiwavelength pulses were generated using a monolithically integrated device. The device used is an integrated InGaAs/InGaAsP/InP multi-wavelength laser fabricated by selective area regrowth. The device self pulsated on all of the four wavelength channels. 48 ps pulses were obtained which were measured by a 50GHz oscilloscope and 32GHz photodiode which was not bandwidth limited. Simultaneous multi-wavelength pulse generation was also achieved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel InGaAs/InGaAsP/InP integrated multiwavelength grating cavity laser is presented, which has been used to demonstrate space switching and simultaneous all-optical wavelength conversion at bit rates of 2.488 Gbit/s. This has been achieved using a single monolithically integrated device without the need for post-filtering to separate the converted signal from the input.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The field emission behaviour of a series of Tetrahedrally Bonded Amorphous Carbon (ta-C) films has been measured. The films were produced using a Filtered Cathodic Vacuum Arc System. The threshold field for emission and current densities achievable have been investigated as a function of sp3/sp2 bonding ratio and nitrogen content. Typical as-grown undoped ta-C films have a threshold field of order 10-15 V/μm and optimally nitrogen-doped films exhibit fields as low as 5 V/μm. The emission as a function of back contact and front surface condition has also been considered and shows that the back contact has only a minor effect on emission efficiency. However, after etching in either an oxygen or hydrogen plasma, the films show a marked reduction in threshold field, down to as low as 2-3 V/μm, and a marked improvement in emission site density.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tetrahedrally bonded amorphous carbon (ta-C) is a new type of semiconducting thin film material. It can be produced at room temperature using the Filtered Cathodic Vacuum Arc technique. The as-grown undoped ta-C is p-type in nature but it can be n-doped by the addition of nitrogen during deposition. This paper will describe thin film transistor design and fabrication using ta-C as the active channel layer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Field emission from a series of tetrahedrally bonded amorphous-carbon (ta-C) films, deposited in a filtered cathodic vacuum arc, has been measured. The threshold field for emission and current densities achievable have been investigated as a function of sp3/sp2 bonding ratio and nitrogen content. Typical as-grown undoped ta-C films have threshold fields of the order 10-15 V/μm and optimally nitrogen doped films exhibited fields as low as 5 V/μm. In order to gain further understanding of the mechanism of field emission, the films were also subjected to H2, Ar, and O2 plasma treatments and were also deposited onto substrates of different work function. The threshold field, emission current, emission site densities were all significantly improved by the plasma treatment, but little dependence of these properties on work function of the substrate was observed. This suggests that the main barrier to emission in these films is at the front surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Melt grown Nd-Ba-Cu-O (NdBCO) has been reported to exhibit higher values of critical current density, Jc and irreversibility field, Hirr, than other (RE)BCO superconductors, such as YBCO. The microstructure of NdBCO typically contains 5-10 μm sized inclusions of the Nd4Ba2Cu2O10 phase (Nd-422) in a superconducting NdBa2Cu3O7-δ phase (Nd-123) matrix. The average size of these inclusions is characteristically larger than that of the Y2BaCuO5 (Y-211) inclusions in YBCO. As a result, there is scope to further refine the Nd-422 size to enhance Jc in NdBCO. Large grain samples of NdBCO superconductor doped with various amounts of depleted UO2 and containing excess Nd-422 have been fabricated by top seeded melt growth under reduced oxygen partial pressure. The effect of the addition of depleted UO2 on the NdBCO microstructure has been studied systematically in samples with and without added CeO2. It is observed that the addition of UO2 refines the NdBCO microstructure via the formation of uranium-containing phase particles in the superconducting matrix. These particles are of approximately spherical geometry with dimensions of around 1 μm. The average size of the nonsuperconducting phase particles in the uranium-doped microstructure is an order of magnitude less than their size in un-doped Nd-123 prepared with excess Nd-422. The critical current density of uranium-doped NdBCO is observed to increase significantly compared to the undoped material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large, single grain Nd-Ba-Cu-O (NdBCO) composite samples of NdBa2Cu3O7-δ (Nd-123) containing 15 and 20 mol. % non-superconducting Nd4Ba2Cu2O10 (Nd-422) phase inclusions have been fabricated successfully by a variety of techniques based on top-seeded melt growth under reduced oxygen partial pressure. Specifically, individual grains up to 2cm in diameter have been grown using (100) oriented MgO seeding, self (NdBCO) seeding at elevated temperature and self-seeding of Ag and Au doped precursor pellets. The latter exhibit a reduced peritectic decomposition temperature compared with the undoped compound. These techniques, which vary in degree of difficulty and hence reliability, yield grains with a range of microstructural homogeneity. This paper describes the general aspects of large NdBCO grain fabrication and presents the results of the different fabrication techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The authors have doped RABiTS coated conductor tapes with Ca in an attempt to enhance the transport properties. By diffusing Ca into the YBCO film from a CaZrO3 overlayer, the authors have been able to preferentially dope the grain boundaries of the superconductor. Hence it has been possible to obtain doped tapes which do not have a significantly degraded T-c. The authors have measured the critical currents of doped and undoped samples over a wide range of temperature, magnetic field, and magnetic field angle in order to study the effect of Ca on the grain boundaries. The authors find that doping using short anneal times produces enhanced critical currents in large magnetic fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The critical currents of coated conductors fabricated by metal-organic deposition (MOD) on rolling-assisted biaxially textured substrates (RABiTS) and by pulsed laser deposition (PLD) on ion-beam assisted deposition (IBAD) templates have been measured as a function of magnetic field orientation and compared to films grown on single crystal substrates. By varying the orientation of magnetic field applied in the plane of the film, we are able to determine the extent to which current flow in each type of conductor is percolative. Standard MOD/RABiTS conductors have also been compared to samples whose grain boundaries have been doped by diffusing Ca from an overlayer. We find that undoped MOD/RABiTS tapes have a less anisotropic in-plane field dependence than PLD/IBAD tapes and that the uniformity of critical current as a function of in-plane field angle is greater for MOD/RABiTS samples doped with Ca. (C) 2005 American Institute of Physics.