50 resultados para Temporal muscle


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern theories of motor control incorporate forward models that combine sensory information and motor commands to predict future sensory states. Such models circumvent unavoidable neural delays associated with on-line feedback control. Here we show that signals in human muscle spindle afferents during unconstrained wrist and finger movements predict future kinematic states of their parent muscle. Specifically, we show that the discharges of type Ia afferents are best correlated with the velocity of length changes in their parent muscles approximately 100-160 ms in the future and that their discharges vary depending on motor sequences in a way that cannot be explained by the state of their parent muscle alone. We therefore conclude that muscle spindles can act as "forward sensory models": they are affected both by the current state of their parent muscle and by efferent (fusimotor) control, and their discharges represent future kinematic states. If this conjecture is correct, then sensorimotor learning implies learning how to control not only the skeletal muscles but also the fusimotor system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Humans are able to stabilize their movements in environments with unstable dynamics by selectively modifying arm impedance independently of force and torque. We further investigated adaptation to unstable dynamics to determine whether the CNS maintains a constant overall level of stability as the instability of the environmental dynamics is varied. Subjects performed reaching movements in unstable force fields of varying strength, generated by a robotic manipulator. Although the force fields disrupted the initial movements, subjects were able to adapt to the novel dynamics and learned to produce straight trajectories. After adaptation, the endpoint stiffness of the arm was measured at the midpoint of the movement. The stiffness had been selectively modified in the direction of the instability. The stiffness in the stable direction was relatively unchanged from that measured during movements in a null force field prior to exposure to the unstable force field. This impedance modification was achieved without changes in force and torque. The overall stiffness of the arm and environment in the direction of instability was adapted to the force field strength such that it remained equivalent to that of the null force field. This suggests that the CNS attempts both to maintain a minimum level of stability and minimize energy expenditure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies examining adaptation to unexpected changes in the mechanical environment highlight the use of position error in the adaptation process. However, force information is also available. In this chapter, we examine adaptation processes in three separate studies where the mechanical environment was changed intermittently. We compare the expected consequences of using position error and force information in the changes to motor commands following a change in the mechanical environment. In general, our results support the use of position error over force information and are consistent with current computational models of motor learning. However, in situations where the change in the mechanical environment eliminates position error the central nervous system does not necessarily respond as would be predicted by these models. We suggest that it is necessary to take into account the statistics of prior experience to account for our observations. Another deficiency in these models is the absence of a mechanism for modulating limb mechanical impedance during adaptation. We propose a relatively simple computational model based on reflex responses to perturbations which is capable of accounting for iterative changes in temporal patterns of muscle co-activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Breather stability and longevity in thermally relaxing nonlinear arrays is investigated under the scrutiny of the analysis and tools employed for time series and state reconstruction of a dynamical system. We briefly review the methods used in the analysis and characterize a breather in terms of the results obtained with such methods. Our present work focuses on spontaneously appearing breathers in thermal Fermi-Pasta-Ulam arrays but we believe that the conclusions are general enough to describe many other related situations; the particular case described in detail is presented as another example of systems where three incommensurable frequencies dominate their chaotic dynamics (reminiscent of the Ruelle-Takens scenario for the appearance of chaotic behavior in nonlinear systems). This characterization may also be of great help for the discovery of breathers in experimental situations where the temporal evolution of a local variable (like the site energy) is the only available/measured data. © 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of mixture-model techniques for motion estimation and image sequence segmentation was discussed. The issues such as modeling of occlusion and uncovering, determining the relative depth of the objects in a scene, and estimating the number of objects in a scene were also investigated. The segmentation algorithm was found to be computationally demanding, but the computational requirements were reduced as the motion parameters and segmentation of the frame were initialized. The method provided a stable description, in whichthe addition and removal of objects from the description corresponded to the entry and exit of objects from the scene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a novel model for the spatio-temporal clustering of trajectories based on motion, which applies to challenging street-view video sequences of pedestrians captured by a mobile camera. A key contribution of our work is the introduction of novel probabilistic region trajectories, motivated by the non-repeatability of segmentation of frames in a video sequence. Hierarchical image segments are obtained by using a state-of-the-art hierarchical segmentation algorithm, and connected from adjacent frames in a directed acyclic graph. The region trajectories and measures of confidence are extracted from this graph using a dynamic programming-based optimisation. Our second main contribution is a Bayesian framework with a twofold goal: to learn the optimal, in a maximum likelihood sense, Random Forests classifier of motion patterns based on video features, and construct a unique graph from region trajectories of different frames, lengths and hierarchical levels. Finally, we demonstrate the use of Isomap for effective spatio-temporal clustering of the region trajectories of pedestrians. We support our claims with experimental results on new and existing challenging video sequences. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Humans have been shown to adapt to the temporal statistics of timing tasks so as to optimize the accuracy of their responses, in agreement with the predictions of Bayesian integration. This suggests that they build an internal representation of both the experimentally imposed distribution of time intervals (the prior) and of the error (the loss function). The responses of a Bayesian ideal observer depend crucially on these internal representations, which have only been previously studied for simple distributions. To study the nature of these representations we asked subjects to reproduce time intervals drawn from underlying temporal distributions of varying complexity, from uniform to highly skewed or bimodal while also varying the error mapping that determined the performance feedback. Interval reproduction times were affected by both the distribution and feedback, in good agreement with a performance-optimizing Bayesian observer and actor model. Bayesian model comparison highlighted that subjects were integrating the provided feedback and represented the experimental distribution with a smoothed approximation. A nonparametric reconstruction of the subjective priors from the data shows that they are generally in agreement with the true distributions up to third-order moments, but with systematically heavier tails. In particular, higher-order statistical features (kurtosis, multimodality) seem much harder to acquire. Our findings suggest that humans have only minor constraints on learning lower-order statistical properties of unimodal (including peaked and skewed) distributions of time intervals under the guidance of corrective feedback, and that their behavior is well explained by Bayesian decision theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to use environmental stimuli to predict impending harm is critical for survival. Such predictions should be available as early as they are reliable. In pavlovian conditioning, chains of successively earlier predictors are studied in terms of higher-order relationships, and have inspired computational theories such as temporal difference learning. However, there is at present no adequate neurobiological account of how this learning occurs. Here, in a functional magnetic resonance imaging (fMRI) study of higher-order aversive conditioning, we describe a key computational strategy that humans use to learn predictions about pain. We show that neural activity in the ventral striatum and the anterior insula displays a marked correspondence to the signals for sequential learning predicted by temporal difference models. This result reveals a flexible aversive learning process ideally suited to the changing and uncertain nature of real-world environments. Taken with existing data on reward learning, our results suggest a critical role for the ventral striatum in integrating complex appetitive and aversive predictions to coordinate behaviour.