57 resultados para Technical and Fundamentalist Analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the characterisation of self-excited oscillations in a kerosene burner. The combustion instability exhibits two different modes and frequencies depending on the air flow rate. Experimental results reveal the influence of the spray to shift between these two modes. Pressure and heat release fluctuations have been measured simultaneously and the flame transfer function has been calculated from these measurements. The Mie scattering technique has been used to record spray fluctuations in reacting conditions with a high speed camera. Innovative image processing has enabled us to obtain fluctuations of the Mie scattered light from the spray as a temporal signal acquired simultaneously with pressure fluctuations. This has been used to determine a transfer function relating the image intensity and hence the spray fluctuations to changes in air velocity. This function has identified the different role the spray plays in the two modes of instability. At low air flow rates, the spray responds to an unsteady air flow rate and the time varying spray characteristics lead to unsteady combustion. At higher air flow rates, effective evaporation means that the spray dynamics are less important, leading to a different flame transfer function and frequency of self-excited oscillation. In conclusion, the combustion instabilities observed are closely related with the fluctuations of the spray motion and evaporation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental and theoretical investigation of premixed turbulent combustion in an engine simulator is presented. The distribution of hydroxyl radicals formed in the combustion of propane/air mixtures was visualized by 2D-LIF and used to monitor the progress of the combustion process. For stoichiometric mixtures, images showed a continuous wrinkled flame front, while in lean (λ=1.5) mixtures, local flame extinction was observed as discontinuities in the reaction zone. A bright active reaction zone was still observed in flame inlets and closed concave structures. The effects of self-absorption and of collisional quenching on the fluorescence signal are considered and appear to have only a minor net influence on the shape and width of the flame front. The images are evaluated and interpreted in terms of the Lewis number effect and the laminar flamelet model. Analysis was performed by determining the contour lines of the images (specifically, the ratios of average maximum to equilibrium OH concentration) and comparing with corresponding ratios from unstrained flame simulations. The results show that although the degree of turbulence is not high enough for straining effects to be important, flamelet curvature does play a significant role in the combustion of lean mixtures; this is manifested by a mean effective flame velocity that is less than the laminar burning velocity. © 1991 Combustion Institute.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At medium to high frequencies the dynamic response of a built-up engineering system, such as an automobile, can be sensitive to small random manufacturing imperfections. Ideally the statistics of the system response in the presence of these uncertainties should be computed at the design stage, but in practice this is an extremely difficult task. In this paper a brief review of the methods available for the analysis of systems with uncertainty is presented, and attention is then focused on two particular "non- parametric" methods: statistical energy analysis (SEA), and the hybrid method. The main governing equations are presented, and a number of example applications are considered, ranging from academic benchmark studies to industrial design studies. © 2009 IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytosine methylation is important for transposon silencing and epigenetic regulation of endogenous genes, although the extent to which this DNA modification functions to regulate the genome is still unknown. Here we report the first comprehensive DNA methylation map of an entire genome, at 35 base pair resolution, using the flowering plant Arabidopsis thaliana as a model. We find that pericentromeric heterochromatin, repetitive sequences, and regions producing small interfering RNAs are heavily methylated. Unexpectedly, over one-third of expressed genes contain methylation within transcribed regions, whereas only approximately 5% of genes show methylation within promoter regions. Interestingly, genes methylated in transcribed regions are highly expressed and constitutively active, whereas promoter-methylated genes show a greater degree of tissue-specific expression. Whole-genome tiling-array transcriptional profiling of DNA methyltransferase null mutants identified hundreds of genes and intergenic noncoding RNAs with altered expression levels, many of which may be epigenetically controlled by DNA methylation.