40 resultados para Symmetry
Resumo:
In this Brief Report we investigate biomimetic fluid propulsion due to an array of periodically beating artificial cilia. A generic model system is defined in which the effects of inertial fluid forces and the spatial, temporal, and orientational asymmetries of the ciliary motion can be individually controlled. We demonstrate that the so-far unexplored orientational asymmetry plays an important role in generating flow and that the flow increases sharply with Reynolds number and eventually becomes unidirectional. We introduce the concept of configurational symmetry that unifies the spatial, temporal, and orientational symmetries. The breaking of configurational symmetry leads to fluid propulsion in microfluidic channels.
Resumo:
Lifetimes of excited states in 128Ce were measured using the recoil distance Doppler-shift (RDDS) and the Doppler-shift attenuation (DSAM) methods. The experiments were performed at the Wright Nuclear Structure Laboratory of Yale University. Excited states of 128Ce were populated in the 100Mo(32Si,4n) reaction at 120 MeV and the nuclear γ decay was measured with an array of eight Clover detectors positioned at forward and backward angles. The deduced yrast transition strengths together with the energies of the levels within the ground-state (gs) band of 128Ce are in agreement with the predicted values for the X(5) critical point symmetry. Thus, we suggest 128Ce as a benchmark X(5) nucleus in the mass A ≈ 130 region. © World Scientific Publishing Company.
Resumo:
A symmetry-extended Maxwell treatment of the net mobility of periodic bar-and-joint frameworks is used to derive a sufficient condition for auxetic behaviour of a 2D material. The type of auxetic behaviour that can be detected by symmetry has Poisson's ratio -1, with equal expansion/contraction in all directions, and is here termed equiauxetic. A framework may have a symmetry-detectable equiauxetic mechanism if it belongs to a plane group that includes rotational axes of order n = 6, 4, or 3. If the reducible representation for the net mobility contains mechanisms that preserve full rotational symmetry (A modes), these are equiauxetic. In addition, for n = 6, mechanisms that halve rotational symmetry (B modes) are also equiauxetic. © EPLA, 2013.
Resumo:
A symmetry-adapted version of the Maxwell rule appropriate to periodic bar-and-joint frameworks is obtained, and is further extended to body-and-joint systems. The treatment deals with bodies and forces that are replicated in every unit cell, and uses the point group isomorphic to the factor group of the space group of the framework. Explicit expressions are found for the numbers and symmetries of detectable mechanisms and states of self-stress in terms of the numbers and symmetries of framework components. This approach allows detection and characterization of mechanisms and states of self-stress in microscopic and macroscopic materials and meta-materials. Illustrative examples are described. The notion of local isostaticity of periodic frameworks is extended to include point-group symmetry.
Resumo:
A new idea of power device, which contains highly nitrogen-doped CVD diamond and Schottky contact, is proposed to actualise a power device with diamond. Two-dimensional simulation is conducted using ISE TCAD device simulator. While comparably high current is obtained in a transient simulation as expected, this current does not contribute to the drain-source current because of the symmetry of the device. Using an asymmetric structure or bias conditions, the device has high potential as an electric device for extremely high power, high frequency and high temperature. © 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Humans use their arms to engage in a wide variety of motor tasks during everyday life. However, little is known about the statistics of these natural arm movements. Studies of the sensory system have shown that the statistics of sensory inputs are key to determining sensory processing. We hypothesized that the statistics of natural everyday movements may, in a similar way, influence motor performance as measured in laboratory-based tasks. We developed a portable motion-tracking system that could be worn by subjects as they went about their daily routine outside of a laboratory setting. We found that the well-documented symmetry bias is reflected in the relative incidence of movements made during everyday tasks. Specifically, symmetric and antisymmetric movements are predominant at low frequencies, whereas only symmetric movements are predominant at high frequencies. Moreover, the statistics of natural movements, that is, their relative incidence, correlated with subjects' performance on a laboratory-based phase-tracking task. These results provide a link between natural movement statistics and motor performance and confirm that the symmetry bias documented in laboratory studies is a natural feature of human movement.