40 resultados para Strictly hyperbolic polynomial
Resumo:
Deformations of sandy soils around geotechnical structures generally involve strains in the range small (0·01%) to medium (0·5%). In this strain range the soil exhibits non-linear stress-strain behaviour, which should be incorporated in any deformation analysis. In order to capture the possible variability in the non-linear behaviour of various sands, a database was constructed including the secant shear modulus degradation curves of 454 tests from the literature. By obtaining a unique S-shaped curve of shear modulus degradation, a modified hyperbolic relationship was fitted. The three curve-fitting parameters are: an elastic threshold strain γe, up to which the elastic shear modulus is effectively constant at G0; a reference strain γr, defined as the shear strain at which the secant modulus has reduced to 0·5G0; and a curvature parameter a, which controls the rate of modulus reduction. The two characteristic strains γe and γr were found to vary with sand type (i.e. uniformity coefficient), soil state (i.e. void ratio, relative density) and mean effective stress. The new empirical expression for shear modulus reduction G/G0 is shown to make predictions that are accurate within a factor of 1·13 for one standard deviation of random error, as determined from 3860 data points. The initial elastic shear modulus, G0, should always be measured if possible, but a new empirical relation is shown to provide estimates within a factor of 1·6 for one standard deviation of random error, as determined from 379 tests. The new expressions for non-linear deformation are easy to apply in practice, and should be useful in the analysis of geotechnical structures under static loading.
Resumo:
Several equations of state (EOS) have been incorporated into a novel algorithm to solve a system of multi-phase equations in which all phases are assumed to be compressible to varying degrees. The EOSs are used to both supply functional relationships to couple the conservative variables to the primitive variables and to calculate accurately thermodynamic quantities of interest, such as the speed of sound. Each EOS has a defined balance of accuracy, robustness and computational speed; selection of an appropriate EOS is generally problem-dependent. This work employs an AUSM+-up method for accurate discretisation of the convective flux terms with modified low-Mach number dissipation for added robustness of the solver. In this paper we show a newly-developed time-marching formulation for temporal discretisation of the governing equations with incorporated time-dependent source terms, as well as considering the system of eigenvalues that render the governing equations hyperbolic.
Resumo:
The design of a deployable structure which deploys from a compact bundle of six parallel bars to a rectangular ring is considered. The structure is a plane symmetric Bricard linkage. The internal mechanism is described in terms of its Denavit-Hartenberg parameters; the nature of its single degree of freedom is examined in detail by determining the exact structure of the system of equations governing its movement; a range of design parameters for building feasible mechanisms is determined numerically; and polynomial continuation is used to design rings with certain specified desirable properties. © 2013 Elsevier Ltd.
Resumo:
Reconstruction of biochemical reaction networks (BRN) and genetic regulatory networks (GRN) in particular is a central topic in systems biology which raises crucial theoretical challenges in system identification. Nonlinear Ordinary Differential Equations (ODEs) that involve polynomial and rational functions are typically used to model biochemical reaction networks. Such nonlinear models make the problem of determining the connectivity of biochemical networks from time-series experimental data quite difficult. In this paper, we present a network reconstruction algorithm that can deal with ODE model descriptions containing polynomial and rational functions. Rather than identifying the parameters of linear or nonlinear ODEs characterised by pre-defined equation structures, our methodology allows us to determine the nonlinear ODEs structure together with their associated parameters. To solve the network reconstruction problem, we cast it as a compressive sensing (CS) problem and use sparse Bayesian learning (SBL) algorithms as a computationally efficient and robust way to obtain its solution. © 2012 IEEE.
Resumo:
We offer a solution to the problem of efficiently translating algorithms between different types of discrete statistical model. We investigate the expressive power of three classes of model-those with binary variables, with pairwise factors, and with planar topology-as well as their four intersections. We formalize a notion of "simple reduction" for the problem of inferring marginal probabilities and consider whether it is possible to "simply reduce" marginal inference from general discrete factor graphs to factor graphs in each of these seven subclasses. We characterize the reducibility of each class, showing in particular that the class of binary pairwise factor graphs is able to simply reduce only positive models. We also exhibit a continuous "spectral reduction" based on polynomial interpolation, which overcomes this limitation. Experiments assess the performance of standard approximate inference algorithms on the outputs of our reductions.
Resumo:
This work employed a clayey, silty, sandy gravel contaminated with a mixture of metals (Cd, Cu, Pb, Ni and Zn) and diesel. The contaminated soil was treated with 5 and 10% dosages of different cementitious binders. The binders include Portland cement, cement-fly ash, cement-slag and lime-slag mixtures. Monolithic leaching from the treated soils was evaluated over a 64-day period alongside granular leachability of 49- and 84-day old samples. Surface wash-off was the predominant leaching mechanism for monolithic samples. In this condition, with data from different binders and curing ages combined, granular leachability as a function of monolithic leaching generally followed degrees 4 and 6 polynomial functions. The only exception was for Cu, which followed the multistage dose-response model. The relationship between both leaching tests varied with the type of metal, curing age/residence time of monolithic samples in the leachant, and binder formulation. The results provide useful design information on the relationship between leachability of metals from monolithic forms of S/S treated soils and the ultimate leachability in the eventual breakdown of the stabilized/solidified soil.
Resumo:
A multivariate, robust, rational interpolation method for propagating uncertainties in several dimensions is presented. The algorithm for selecting numerator and denominator polynomial orders is based on recent work that uses a singular value decomposition approach. In this paper we extend this algorithm to higher dimensions and demonstrate its efficacy in terms of convergence and accuracy, both as a method for response suface generation and interpolation. To obtain stable approximants for continuous functions, we use an L2 error norm indicator to rank optimal numerator and denominator solutions. For discontinous functions, a second criterion setting an upper limit on the approximant value is employed. Analytical examples demonstrate that, for the same stencil, rational methods can yield more rapid convergence compared to pseudospectral or collocation approaches for certain problems. © 2012 AIAA.
Resumo:
Flow measurement data at the district meter area (DMA) level has the potential for burst detection in the water distribution systems. This work investigates using a polynomial function fitted to the historic flow measurements based on a weighted least-squares method for automatic burst detection in the U.K. water distribution networks. This approach, when used in conjunction with an expectationmaximization (EM) algorithm, can automatically select useful data from the historic flow measurements, which may contain normal and abnormal operating conditions in the distribution network, e.g., water burst. Thus, the model can estimate the normal water flow (nonburst condition), and hence the burst size on the water distribution system can be calculated from the difference between the measured flow and the estimated flow. The distinguishing feature of this method is that the burst detection is fully unsupervised, and the burst events that have occurred in the historic data do not affect the procedure and bias the burst detection algorithm. Experimental validation of the method has been carried out using a series of flushing events that simulate burst conditions to confirm that the simulated burst sizes are capable of being estimated correctly. This method was also applied to eight DMAs with known real burst events, and the results of burst detections are shown to relate to the water company's records of pipeline reparation work. © 2014 American Society of Civil Engineers.
Resumo:
The tendency to make unhealthy choices is hypothesized to be related to an individual's temporal discount rate, the theoretical rate at which they devalue delayed rewards. Furthermore, a particular form of temporal discounting, hyperbolic discounting, has been proposed to explain why unhealthy behavior can occur despite healthy intentions. We examine these two hypotheses in turn. We first systematically review studies which investigate whether discount rates can predict unhealthy behavior. These studies reveal that high discount rates for money (and in some instances food or drug rewards) are associated with several unhealthy behaviors and markers of health status, establishing discounting as a promising predictive measure. We secondly examine whether intention-incongruent unhealthy actions are consistent with hyperbolic discounting. We conclude that intention-incongruent actions are often triggered by environmental cues or changes in motivational state, whose effects are not parameterized by hyperbolic discounting. We propose a framework for understanding these state-based effects in terms of the interplay of two distinct reinforcement learning mechanisms: a "model-based" (or goal-directed) system and a "model-free" (or habitual) system. Under this framework, while discounting of delayed health may contribute to the initiation of unhealthy behavior, with repetition, many unhealthy behaviors become habitual; if health goals then change, habitual behavior can still arise in response to environmental cues. We propose that the burgeoning development of computational models of these processes will permit further identification of health decision-making phenotypes.
Resumo:
Surprisingly expensive to compute wall distances are still used in a range of key turbulence and peripheral physics models. Potentially economical, accuracy improving differential equation based distance algorithms are considered. These involve elliptic Poisson and hyperbolic natured Eikonal equation approaches. Numerical issues relating to non-orthogonal curvilinear grid solution of the latter are addressed. Eikonal extension to a Hamilton-Jacobi (HJ) equation is discussed. Use of this extension to improve turbulence model accuracy and, along with the Eikonal, enhance Detached Eddy Simulation (DES) techniques is considered. Application of the distance approaches is studied for various geometries. These include a plane channel flow with a wire at the centre, a wing-flap system, a jet with co-flow and a supersonic double-delta configuration. Although less accurate than the Eikonal, Poisson method based flow solutions are extremely close to those using a search procedure. For a moving grid case the Poisson method is found especially efficient. Results show the Eikonal equation can be solved on highly stretched, non-orthogonal, curvilinear grids. A key accuracy aspect is that metrics must be upwinded in the propagating front direction. The HJ equation is found to have qualitative turbulence model improving properties. © 2003 by P. G. Tucker.