48 resultados para Sauer, Russell


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four types of neural networks which have previously been established for speech recognition and tested on a small, seven-speaker, 100-sentence database are applied to the TIMIT database. The networks are a recurrent network phoneme recognizer, a modified Kanerva model morph recognizer, a compositional representation phoneme-to-word recognizer, and a modified Kanerva model morph-to-word recognizer. The major result is for the recurrent net, giving a phoneme recognition accuracy of 57% from the si and sx sentences. The Kanerva morph recognizer achieves 66.2% accuracy for a small subset of the sa and sx sentences. The results for the word recognizers are incomplete.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method to fabricate polymer field-effect transistors with submicron channel lengths is described. A thin polymer film is spin coated on a prepatterned resist with a low resolution to create a thickness contrast in the overcoated polymer layer. After plasma and solvent etching, a submicron-sized line structure, which templates the contour of the prepattern, is obtained. A further lift-off process is applied to define source-drain electrodes of transistors. With a combination of ink-jet printing, transistors with channel length down to 400 nm have been fabricated by this method. We show that drive current density increases as expected, while the on/off current ratio 106 is achieved. © 2005 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon fibre-epoxy composite square honeycombs, and the parent composite material, were tested in quasi-static compression at a strain rate of 10 -3 s -1 and in dynamic compression at strain rates of 10 3-10 4 s -1 using an instrumented Kolsky bar arrangement. Taken together, these tests provide an assessment of the potential of this composite topology for use as a lightweight sandwich core. The honeycombs had two relative densities, 0.12 and 0.24, and two material orientations, ±45° and 0/90° with respect to the prismatic, loading direction of the honeycomb. Honeycomb manufacture was by slotting, assembling and bonding together carbon fibre/epoxy woven plies of composite sheets of 2 × 2 twill weave construction. The peak value of wall stress in the honeycombs was about one third that of the parent material, for all strain rates. An elastic finite element analysis was used to trace the source of this knock-down in strength: a stress concentration exists at the root of the slots and leads to premature failure by microbuckling. Shock-wave effects were evident at impact velocities exceeding 50 ms -1 for the honeycomb of relative density 0.12. This was traced to stubbing of the buckled cell walls against the face of the Kolsky bar. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamic response of end-clamped monolithic beams and sandwich beams of equal areal mass have been measured by loading the beams at mid-span with metal foam projectiles to simulate localised blast loading. The sandwich beams were made from carbon fibre laminate and comprised identical face sheets and a square-honeycomb core. The transient deflection of the beams was determined as a function of projectile momentum, and the measured response was compared with finite element simulations based upon a damage mechanics approach. A range of failure modes were observed in the sandwich beams including core fracture, plug-type shear failure of the core, debonding of the face sheets from the core and tensile tearing of the face sheets at the supports. In contrast, the monolithic beams failed by a combination of delamination of the plies and tensile failure at the supports. The finite element simulations of the beam response were accurate provided the carbon fibre properties were endowed with rate sensitivity of damage growth. The relative performance of monolithic and sandwich beams were quantified by the maximum transverse deflection at mid-span for a given projectile momentum. It was found that the sandwich beams outperformed both monolithic composite beams and steel sandwich beams with a square-honeycomb core. However, the composite beams failed catastrophically at a lower projectile impulse than the steel beams due to the lower ductility of the composite material. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamic compressive response of corrugated carbon-fibre reinforced epoxy sandwich cores has been investigated using a Kolsky-bar set-up. Compression at quasi-static rates up to v 0=200ms -1 have been tested on three different slenderness ratios of strut. High speed photography was used to capture the failure mechanisms and relate these to the measured axial compressive stress. Experiments show significant strength enhancement as the loading rate increases. Although material rate sensitivity accounts for some of this, it has been shown that the majority of the strength enhancement is due to inertial stabilisation of the core members. Inertial strength enhancement rises non-linearly with impact velocity. The largest gains are associated with a shift to buckle modes composed of 2-3 half sine waves. The loading rates tested within this study are similar to those that are expected when a sandwich core is compressed due to a blast event. © 2012 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ballistic performance of equi-mass plates made from (i) stainless steel (SS); (ii) carbon fibre/epoxy (CF) laminate and (iii) a hybrid plate of both materials has been characterised for a spherical steel projectile. The hybrid plate was orientated with steel on the impact face (SSCF) and on the distal face (CFSS). The penetration velocity (V 50) was highest for the SS plate and lowest for the CF plate. A series of double impact tests were performed, with an initial velocity V I and a subsequent velocity V II at the same impact site. An interaction diagram in (V I,V II) space was constructed to delineate penetration from survival under both impacts. The degree of interaction between the two impact events was greater for the CFSS plate than for the SSCF plate, implying that the distal face has the major effect upon the degree of interaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of strain rate upon the uniaxial response of Ultra High Molecular-weight Polyethylene (UHMWPE) fibres, yarns and laminates of lay-up [0/90]48 has been measured in both the 0/90 and ±45 configurations. The tensile strength of the matrix-dominated ±45 laminate is two orders of magnitude less than that of the fibre-dominated 0/90 laminate, and is more sensitive to strain rate. A piezoelectric force sensor device was developed to obtain the high strain rate data, and this achieved a rise time of less than 1 μs. It is found that the failure strength (and failure strain) of the yarn is almost insensitive to strain rate within the range (10 -1-103 s-1). At low strain rates (below 10 -1 s-1), creep of the yarn dominates and the failure strain increases with diminishing strain rate. The tensile strength of the dry yarn exceeds that of the laminate by about 20%. Tests on single fibres exceed the strength of the yarn by 20%. © 2013 Elsevier Ltd. All rights reserved.