86 resultados para SENSORLESS DRIVES
Resumo:
Freehand 3D ultrasound can be acquired without a position sensor by finding the separations of pairs of frames using information in the images themselves. Previous work has not considered how to reconstruct entirely freehand data, which can exhibit irregularly spaced frames, non-monotonic out-of-plane probe motion and significant inplane motion. This paper presents reconstruction methods that overcome these limitations and are able to robustly reconstruct freehand data. The methods are assessed on freehand data sets and compared to reconstructions obtained using a position sensor.
Resumo:
An experimental evaluation of small two-phase induction motor drives operating with different inverter topologies is described. Results show that a PWM-based four-switch inverter, having only low-side switches is attractive for high-speed low-cost applications where speeds greater than those that can be obtained using single phase induction motors are required.
Resumo:
In this paper the influence of the form of motor excitation on the performance of a small (< 1 kW) induction motor drive is studied. Two forms of excitation, namely sine waves generated by pulse width modulation and simple square wave are explored. Sine wave excitation gives lower motor losses but increases inverter losses. Conversely, square wave excitation increases motor losses but decreases inverter losses. Losses have been measured directly by calorimetric means or, in the case of the inverter, predicted by a Pspice model that has been verified by calorimetric methods. The work shows that overall, the use of square wave excitation leads to a more efficient drive. © 2004 The Institution of Electrical Engineers.
Resumo:
this paper quantifies effects of using three different pulse width modulation (PWM) schemes on the losses in the inverter and induction motor of a 1 kW drive. Direct measurements of losses have been made with a calorimeter. Results show that for the inverter, discontinuous PWM excitation reduces losses by up to 15% compared to sine and symmetrical space vector PWM methods. However, at a low modulation index the greater harmonic content with discontinuous PWM increased motor losses by nearly 20%. This study demonstrates the importance of careful choice of modulation scheme to achieve high overall drive efficiency. © 2005 IEEE.
Resumo:
Three-phase induction motors offer significant advantages over commutator motors in some domestic appliances. Models for wide speed range three-phase induction motors for use in a horizontal axis washing machine have been developed using the MEGA finite element package with an external formulation for calculating iron losses. Motor loss predictions have been verified using a novel high accuracy calorimeter. Good agreement has been observed over a wide speed range at different loadings. The model is used to predict motor temperature rise under typical washing machine loading conditions to ensure its limiting temperature is not exceeded and enables alternative designs to be investigated without recourse to physical prototypes. © 2005 IEEE.