34 resultados para SE(T) SPECIMEN
Resumo:
Spatial normalisation is a key element of statistical parametric mapping and related techniques for analysing cohort statistics on voxel arrays and surfaces. The normalisation process involves aligning each individual specimen to a template using some sort of registration algorithm. Any misregistration will result in data being mapped onto the template at the wrong location. At best, this will introduce spatial imprecision into the subsequent statistical analysis. At worst, when the misregistration varies systematically with a covariate of interest, it may lead to false statistical inference. Since misregistration generally depends on the specimen's shape, we investigate here the effect of allowing for shape as a confound in the statistical analysis, with shape represented by the dominant modes of variation observed in the cohort. In a series of experiments on synthetic surface data, we demonstrate how allowing for shape can reveal true effects that were previously masked by systematic misregistration, and also guard against misinterpreting systematic misregistration as a true effect. We introduce some heuristics for disentangling misregistration effects from true effects, and demonstrate the approach's practical utility in a case study of the cortical bone distribution in 268 human femurs.
Resumo:
Tensile and compression properties of self-reinforced poly(ethylene terephthalate) (SrPET) composites has been investigated. SrPET composites or all-polymer composites have improved mechanical properties compared to the bulk polymer but with maintained recyclability. In contrast to traditional carbon/glass fibre reinforced composites, SrPET composites are very ductile, resulting in high failure strains without softening or catastrophic failure. In tension, the SrPET composites behave linear elastically until the fibre-matrix interface fails, at which point the stiffness starts decreasing. As the material is further strained, strain hardening occurs and the specimen finally fails at a global strain above 10%. In compression, the composite initially fails through fibre yielding, and at higher strains through fibre bending. The stress-strain response is reminiscent of an elastic-perfectly plastic material with a high strain to failure (typically over 10%). This indicates that SrPET composites are not only candidates as semi-structural composites but also as highly efficient energy absorbing materials. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
This paper investigates the design and modelling of an integrated device for acoustic resonance spectroscopy (ARS). Miniaturisation of such platforms can be achieved using MEMS technology thereby enabling scaling of device dimensions to investigate smaller specimens while simultaneously operating at higher frequencies. We propose an integrated device where the transducers are mounted in close proximity with the specimen to be analysed (e.g. by integrating ultrasound transducers within a microfluidic channel). A finite element (FE) model and a simplified analytical model have been constructed to predict the acoustic response of a sample embedded in such a device configuration. A FE simulation is performed in COMSOL by embedding the piezoelectric transducers in representative fluid media. Resonant frequencies associated with the measurement can be extracted from this data. The response of various media modelled through FEA matches with analytical predictions for a range of biological media. A variety of biological media may be identified by using the measured resonant frequencies as a signature of relevant physical characteristics. The paper establishes the modelling basis of an integrated acoustic resonant spectrometer that is then applied to examine the impact of geometrical scaling on system resolution. © 2013 IEEE.
Resumo:
A new simple shear testing device capable of applying multidirectional loading to soil specimens has been developed. The Texas A&M University multidirectional simple shear (TAMU-MDSS) device provides the ability to apply a large range of shear stresses and complex loading paths, such as figure-eight and circular patterns, to a cylindrical soil specimen confined by a wire-reinforced membrane. The load and torque experienced by the sample are directly measured by a multi-axis load cell installed above the specimen. Backpressure saturation of the specimen is made possible by the devicés ability to apply pressure in the chamber and backpressure to the water lines. Excess pore pressure is measured by a pressure transducer during the shearing phase of the testing. This paper describes the development of the TAMU-MDSS system and the capabilities of the device and presents test results on saturated clay soil specimens subjected to monotonic, unidirectional cyclic, and multidirectional loading. Copyright © 2013 by ASTM International.