42 resultados para Rings
Resumo:
The flow field within an unsteady ejector has been investigated using experimental and computational techniques. The experimental results show a peak thrust augmentation of 1.4; numerical simulation gives a value of 1.37. It is shown that the vortex ring dominates the flow field. At optimal thrust augmentation the vortex ring acts like a fluid piston accelerating the fluid inside the ejector. A model is proposed for the operation of unsteady ejectors, based on the vortex ring acting like a fluid piston. Control volume analysis is presented showing that mass entrainment is responsible for thrust augmentation. It is proposed that the spacing of successive vortex rings determines the mass entrainment and therefore thrust augmentation. The efficiency of unsteady ejectors was found to vary between 28% and 32% depending on the L/D ratio of the unsteady jet source. Copyright © 2008 by J H Heffer.
Resumo:
We describe new results on the vibrations of rolling tyres, aimed at noise prediction for tyres of given design on a smooth road surface. This new approach incorporates our existing models, of smooth road-tyre interaction and belt vibration but includes additional features that are required for real tyre patterns. To this end, the model allows variable tread block size and grooves along the belt circumference; the density and angle of these grooves may also vary laterally. The key innovation is to treat the tyre belt as a laterally stacked series of rings, each of which is equipped with a set of viscoelastic springs around its circumference. It is shown how to use this construction to mimic the details of actual tyre patterns and, in conjunction with existing models, predict belt vibrations. The construction is applied to develop a ring discretisation for a real tyre that shows strong lateral variations. It is shown that the vibration amplitude is concentrated on a set of parallel lines in frequency-wavenumber space and that the tread pattern dictates the occurrence and spacing of these lines. Linkage to a boundary element calculation then allows quantification of the influence of tread parameters on radiated noise. Keywords: Vibration, tread pattern, tyre noise. Copyright © (2011) by the Institute of Noise Control Engineering.
Resumo:
The design of a deployable structure which deploys from a compact bundle of six parallel bars to a rectangular ring is considered. The structure is a plane symmetric Bricard linkage. The internal mechanism is described in terms of its Denavit-Hartenberg parameters; the nature of its single degree of freedom is examined in detail by determining the exact structure of the system of equations governing its movement; a range of design parameters for building feasible mechanisms is determined numerically; and polynomial continuation is used to design rings with certain specified desirable properties. © 2013 Elsevier Ltd.
Resumo:
The supply of water is often required during a centrifuge experiment. For the case of pile jetting, significant flow volumes and pressures are required from the water supply. This paper aims to detail the successful provision of water at high pressures and large flow rates to a centrifuge, using a novel water supply system. An impeller pump was used to pressurise the water in advance of the slip rings, with further pressure provided by the fluid accelerating along the centrifuge beam arm. A maximum pressure of 2 MPa and continuous flow rate of 6 litres per minute were achieved. The calculation of water pressure away from the measurement location is presented, offering a repeatable solution for the pressure at any point in the pipe work. © 2010 Taylor & Francis Group, London.
Resumo:
We describe the design, fabrication, and experimental demonstration of a circular Dammann grating element generating a point-spread function of two concentric rings with equal intensity. The element was fabricated using grayscale lithography, providing a smooth and accurate phase profile. As a result, we obtained high diffraction efficiency and good uniformity between the two rings.
Resumo:
In conventional Finite Element Analysis (FEA) of radial-axial ring rolling (RAR) the motions of all tools are usually defined prior to simulation in the preprocessing step. However, the real process holds up to 8 degrees of freedom (DOF) that are controlled by industrial control systems according to actual sensor values and preselected control strategies. Since the histories of the motions are unknown before the experiment and are dependent on sensor data, the conventional FEA cannot represent the process before experiment. In order to enable the usage of FEA in the process design stage, this approach integrates the industrially applied control algorithms of the real process including all relevant sensors and actuators into the FE model of ring rolling. Additionally, the process design of a novel process 'the axial profiling', in which a profiled roll is used for rolling axially profiled rings, is supported by FEA. Using this approach suitable control strategies can be tested in virtual environment before processing. © 2013 AIP Publishing LLC.
Resumo:
Split-ring resonators represent the ideal route to achieve optical control of the incident light at THz frequencies. These subwavelength metamaterial elements exhibit broad resonances that can be easily tuned lithographically. We have realized a design based on the interplay between the resonances of metallic split rings and the electronic properties of monolayer graphene integrated in a single device. By varying the major carrier concentration of graphene, an active modulation of the optical intensity was achieved in the frequency range between 2.2 and 3.1 THz, achieving a maximum modulation depth of 18%, with a bias as low as 0.5 V.
Resumo:
The brushless doubly fed induction generator (BDFIG) has been proposed as a viable alternative in wind turbines to the commonly used doubly fed induction generator (DFIG). The BDFIG retains the benefits of the DFIG, i.e. variable speed operation with a partially rated converter, but without the use of brush gear and slip rings, thereby conferring enhanced reliability. As low voltage ride-through (LVRT) performance of the DFIG-based wind turbine is well understood, this paper aims to analyze LVRT behavior of the BDFIG-based wind turbine in a similar way. In order to achieve this goal, the equivalence between their two-axis model parameters is investigated. The variation of flux linkages, back-EMFs and currents of both types of generator are elaborated during three phase voltage dips. Moreover, the structural differences between the two generators, which lead to different equivalent parameters and hence different LVRT capabilities, are investigated. The analytical results are verified via time-domain simulations for medium size wind turbine generators as well as experimental results of a voltage dip on a prototype 250 kVA BDFIG. © 2014 Elsevier B.V.
Resumo:
Ring rolling is an incremental bulk forming process for the near-net-shape production of seamless rings. This paper shows how nowadays the process design and optimization can be efficiently supported by simulation methods. For reliable predictions of the material flow and the microstructure evolution it's necessary to include a real ring rolling mill's control algorithm into the model. Furthermore an approach for the online measurement of the profile evolution during the process is presented by means of axial profiling in ring rolling. Hence the definition of new ring rolling strategies is possible even for advanced geometries.
Resumo:
Large grain, bulk Y-Ba-Cu-O (YBCO) high temperature superconductors (HTS) have significant potential for use in a variety of practical applications that incorporate powerful quasi-permanent magnets. In the present work, we investigate how the trapped field of such magnets can be improved by combining bulk YBCO with a soft FeNi, ferromagnetic alloy. This involves machining the alloy into components of various shapes, such as cylinders and rings, which are attached subsequently to the top surface of a solid, bulk HTS cylinder. The effect of these modifications on the magnetic hysteresis curve and trapped field of the bulk superconductor at 77 K are then studied using pick-up coil and Hall probe measurements. The experimental data are compared to finite element modelling of the magnetic flux distribution using Campbell's algorithm. Initially we establish the validity of the technique involving pick-up coils wrapped around the bulk superconductor to obtain its magnetic hysteresis curve in a non-destructive way and highlight the difference between the measured signal and the true magnetization of the sample. We then consider the properties of hybrid ferromagnet/superconductor (F/S) structures. Hall probe measurements, together with the results of the model, establish that flux lines curve outwards through the ferromagnet, which acts, effectively, like a magnetic short circuit. Magnetic hysteresis curves show that the effects of the superconductor and the ferromagnet simply add when the ferromagnet is saturated fully by the applied field. The trapped field of the hybrid structure is always larger than that of the superconductor alone below this saturation level, and especially when the applied field is removed. The results of the study show further that the beneficial effects on the trapped field are enhanced when the ferromagnet covers the entire surface of the superconductor for different ferromagnetic components of various shapes and fixed volume. © 2014 Elsevier B.V. All rights reserved.
Resumo:
The integration of quantum cascade lasers with devices capable of efficiently manipulating terahertz light represents a fundamental step for many different applications. Split-ring resonators, subwavelength metamaterial elements exhibiting broad resonances that are easily tuned lithographically, represent the ideal route to achieve such optical control of the incident light. We have realized a design based on the interplay between metallic split rings and the electronic properties of a graphene monolayer integrated into a single device. By acting on the doping level of graphene, an active modulation of the optical intensity was achieved in the frequency range between 2.2 and 3.1 THz, with a maximum modulation depth of 18%. © 2014 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The integration of quantum cascade lasers with devices capable of efficiently manipulating terahertz light, represents a fundamental step for many different applications. Split-ring resonators, sub-wavelength metamaterial elements exhibiting broad resonances that are easily tuned lithographically, represent the ideal route to achieve such optical control of the incident light. We have realized a design based on the interplay between metallic split rings and the electronic properties of a graphene monolayer integrated into a single device. By acting on the doping level of graphene, an active modulation of the optical intensity was achieved in the frequency range between 2.2 THz and 3.1 THz, with a maximum modulation depth of 18%.