32 resultados para Pure-tone Thresholds


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthesised acoustic guitar sounds based on a detailed physical model are used to provide input for psychoacoustical testing. Thresholds of perception are found for changes in the main parameters of the model. Using a three-alternative forced-choice procedure, just-noticeable differences are presented for changes in frequency and damping of the modes of the guitar body, and also for changes in the tension, bending stiffness and damping parameters of the strings. These are compared with measured data on the range of variation of these parameters in a selection of guitars. © S. Hirzel Verlag © EAA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two adaptive numerical modelling techniques have been applied to prediction of fatigue thresholds in Ni-base superalloys. A Bayesian neural network and a neurofuzzy network have been compared, both of which have the ability to automatically adjust the network's complexity to the current dataset. In both cases, despite inevitable data restrictions, threshold values have been modelled with some degree of success. However, it is argued in this paper that the neurofuzzy modelling approach offers real benefits over the use of a classical neural network as the mathematical complexity of the relationships can be restricted to allow for the paucity of data, and the linguistic fuzzy rules produced allow assessment of the model without extensive interrogation and examination using a hypothetical dataset. The additive neurofuzzy network structure means that redundant inputs can be excluded from the model and simple sub-networks produced which represent global output trends. Both of these aspects are important for final verification and validation of the information extracted from the numerical data. In some situations neurofuzzy networks may require less data to produce a stable solution, and may be easier to verify in the light of existing physical understanding because of the production of transparent linguistic rules. © 1999 Elsevier Science S.A.