46 resultados para Predicted genotypic values


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-dimensional MOS device simulation programs such as MINIMOS left bracket 1 right bracket are limited in their validity due to assumptions made in defining the initial two-dimensional source/drain profiles. The two options available to define source/drain regions both construct a two-dimensional profile from one-dimensional profiles normal to the surface. Inaccuracies in forming these source/drain profiles can be expected to effect predicted device characteristics as channel dimensions of the device are reduced. This paper examines these changes by interfacing numerically similated two dimensional source/drain profiles to MINIMOS and comparing predicted I//D-V//D characteristics with 2-D interfacing, 2-D profiles constructed from interfaced 1-D profiles and MINIMOS self generated profiles. Data obtained for simulations of 3 mu m N and P channel devices are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the structural behavior of precracked reinforced concrete (RC) T-beams strengthened in shear with externally bonded carbon fiber-reinforced polymer (CFRP) sheets. It reports on seven tests on unstrengthened and strengthened RC T-beams, identifying the influence of load history, beam depth, and percentage of longitudinal steel reinforcement on the structural behavior. The experimental results indicate that the contributions of the external CFRP sheets to the shear force capacity can be significant and depend on most of the investigated variables. This study also investigates the accuracy of the prediction of the fiber-reinforced polymer (FRP) contribution in ACI 440.2R-08, UK Concrete Society TR55, and fib Bulletin 14 design guidelines for shear strengthening. A comparison of predicted values with experimental results indicates that the guidelines can overestimate the shear contribution of the externally bonded FRP system. © 2012, American Concrete Institute.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mean-lifetimes, τ, of various medium-spin excited states in Pd103 and Cd106,107 have been deduced using the Recoil Distance Doppler Shift technique and the Differential Decay Curve Method. In Cd106, the mean-lifetimes of the Iπ=12+ state at Ex=5418 keV and the Iπ=11- state at Ex=4324 keV have been deduced as 11.4(17)ps and 8.2(7)ps, respectively. The associated β2 deformation within the axially-symmetric deformed rotor model for these states are 0.14(1) and 0.14(1), respectively. The β2 deformation of 0.14(1) for the Iπ=12+ state in Cd106 compares with a predicted β2 value from total Routhian surface (TRS) calculations of 0.17. In addition, the mean-lifetimes of the yrast Iπ=152- states in Pd103 (at Ex=1262 keV) and Cd107 (at Ex=1360 keV) have been deduced to be 31.2(44)ps and 31.4(17)ps, respectively, corresponding to β2 values of 0.16(1) and 0.12(1) assuming axial symmetry. Agreement with TRS calculations are good for Pd103 but deviate for that predicted for Cd107. © 2007 The American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lifetimes of excited states in 128Ce were measured using the recoil distance Doppler-shift (RDDS) and the Doppler-shift attenuation (DSAM) methods. The experiments were performed at the Wright Nuclear Structure Laboratory of Yale University. Excited states of 128Ce were populated in the 100Mo(32Si,4n) reaction at 120 MeV and the nuclear γ decay was measured with an array of eight Clover detectors positioned at forward and backward angles. The deduced yrast transition strengths together with the energies of the levels within the ground-state (gs) band of 128Ce are in agreement with the predicted values for the X(5) critical point symmetry. Thus, we suggest 128Ce as a benchmark X(5) nucleus in the mass A ≈ 130 region. © World Scientific Publishing Company.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flapping wings often feature a leading-edge vortex (LEV) that is thought to enhance the lift generated by the wing. Here the lift on a wing featuring a leading-edge vortex is considered by performing experiments on a translating flat-plate aerofoil that is accelerated from rest in a water towing tank at a fixed angle of attack of 15°. The unsteady flow is investigated with dye flow visualization, particle image velocimetry (PIV) and force measurements. Leading-and trailing-edge vortex circulation and position are calculated directly from the velocity vectors obtained using PIV. In order to determine the most appropriate value of bound circulation, a two-dimensional potential flow model is employed and flow fields are calculated for a range of values of bound circulation. In this way, the value of bound circulation is selected to give the best fit between the experimental velocity field and the potential flow field. Early in the trajectory, the value of bound circulation calculated using this potential flow method is in accordance with Kelvin's circulation theorem, but differs from the values predicted by Wagner's growth of bound circulation and the Kutta condition. Later the Kutta condition is established but the bound circulation remains small; most of the circulation is contained instead in the LEVs. The growth of wake circulation can be approximated by Wagner's circulation curve. Superimposing the non-circulatory lift, approximated from the potential flow model, and Wagner's lift curve gives a first-order approximation of the measured lift. Lift is generated by inertial effects and the slow buildup of circulation, which is contained in shed vortices rather than bound circulation. © 2013 Cambridge University Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The autoignition characteristics of methanol, ethanol and MTBE (methyl tert-butyl ether) have been investigated in a rapid compression machine at pressures in the range 20-40 atm and temperatures within 750-1000 K. All three oxygenated fuels tested show higher autoignition temperatures than paraffins, a trend consistent with the high octane number of these fuels. The autoignition delay time for methanol was slightly lower than predicted values using reported reaction mechanisms. However, the experimental and measured values for the activation energy are in very good agreement around 44 kcal/mol. The measured activation energy for ethanol autoignition is in good agreement with previous shock tube results (31 kcal/mol), although ignition times predicted by the shock tube correlation are a factor of three lower than the measured values. The measured activation energy for MTBE, 41.4 kcal/mol, was significantly higher than the value previously observed in shock tubes (28.1 kcal/mol). The onset of preignition, characterized by a slow energy release prior to early ignition was observed in some instances. Possible reasons for these ocurrences are discussed. © Copyright 1993 Society of Automotive engineers, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response of submerged slopes on the continental shelf to seismic or storm loading has become an important element in the risk assessment for offshore structures and "local" tsunami hazards worldwide. The geological profile of these slopes typically includes normally consolidated to lightly overconsolidated soft cohesive soils with layer thickness ranging from a few meters to hundreds of meters. The factor of safety obtained from pseudo-static analyses is not always a useful measure for evaluating the slope response, since values less than one do not necessarily imply slope failure with large movements of the soil mass. This paper addresses the relative importance of different factors affecting the response of submerged slopes during seismic loading. The analyses use a dynamic finite element code which includes a constitutive law describing the anisotropic stress-strain-strength behavior of normally consolidated to lightly overconsolidated clays. The model also incorporates anisotropic hardening to describe the effect of different shear strain and stress histories as well as bounding surface principles to provide realistic descriptions of the accumulation of the plastic strains and excess pore pressure during successive loading cycles. The paper presents results from parametric site response analyses on slope geometry and layering, soil material parameters, and input ground motion characteristics. The predicted maximum shear strains, permanent deformations, displacement time histories and maximum excess pore pressure development provide insight of slope performance during a seismic event. © 2006 Author(s). This work is licensed under a Creative Commons License.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Model-based and model-free controllers can, in principle, learn arbitrary actions to optimize their behavior, at least those actions that can be expressed and explored. Indeed, these are often referred to as instrumental controllers because their choices are learned to be instrumental for the delivery of desired outcomes. Although this flexibility is very powerful, it comes with an attendant cost of learning. Evolution appears to have endowed everything from the simplest organisms to us with powerful, pre-specified, but inflexible alternatives. These responses are termed Pavlovian, after the famous Russian physiologist and psychologist Pavlov. The responses of the Pavlovian controller are determined by evolutionary (phylogenetic) considerations rather than (ontogenetic) aspects of the contingent development or learning of an individual. These responses directly interact with instrumental choices arising from goal-directed and habitual controllers. This interaction has been studied in a wealth of animal paradigms, and can be helpful, neutral, or harmful, according to circumstance. Although there has been less careful or analytical study of it in humans, it can be interpreted as underpinning a wealth of behavioral aberrations. © 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response of back-supported buffer plates comprising a solid face sheet and foam core backing impacted by a column of high velocity particles (sand slug) is investigated via a lumped parameter model and coupled discrete/continuum simulations. The buffer plate is either resting on (unattached) or attached to a rigid stationary foundation. The lumped parameter model is used to construct maps of the regimes of behaviour with axes of the ratio of the height of the sand slug to core thickness and the normalised core strength. Four regimes of behaviour are identified based on whether the core compression ends prior to the densification of the sand slug or vice versa. Coupled discrete/continuum simulations are also reported and compared with the lumped parameter model. While the model predicted regimes of behaviour are in excellent agreement with numerical simulations, the lumped parameter model is unable to predict the momentum transmitted to the supports as it neglects the role of elasticity in both the buffer plate and the sand slug. The numerical calculations show that the momentum transfer is minimised for intermediate values of the core strength when the so-called "soft-catch" mechanism is in play. In this regime the bounce-back of the sand slug is minimised which reduces the momentum transfer. However, in this regime, the impulse reduction is small (less than 10% of that transferred to a rigid structure). For high values of the core strength, the response of the buffer plate resembles a rigid plate with nearly no impulse mitigation while at low values of core strength, a slap event occurs when the face sheet impinges against the foundation due to full densification of the foam core. This slap event results in a significant enhancement of the momentum transfer to the foundation. The results demonstrate that appropriately designed buffer plates have potential as impulse mitigators in landmine loading situations. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sandwich panel with a core made from solid pyramidal struts is a promising candidate for multifunctional application such as combined structural and heat-exchange function. This study explores the performance enhancement by making use of hollow struts, and examines the elevation in the plastic buckling strength by either strain hardening or case hardening. Finite element simulations are performed to quantify these enhancements. Also, the sensitivity of competing collapse modes to tube geometry and to the depth of case hardening is determined. A comparison with other lattice materials reveals that the pyramidal lattice made from case hardened steel tubes outperforms lattices made from solid struts of aluminium or titanium and has a comparable strength to a core made from carbon fibre reinforced polymers. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multimode polymer waveguides are an attractive transmission medium for board-level optical links as they provide high bandwidth, relaxed alignment tolerances, and can be directly integrated onto conventional printed circuit boards. However, the performance of multimode waveguide components depends on the launch conditions at the component input, complicating their use in topologies that require the concatenation of multiple multimode components. This paper presents key polymer components for a multichannel optical bus and reports their performance under different launch conditions, enabling useful rules that can be used to design complex interconnection topologies to be derived. The components studied are multimode signal splitters and combiners, 90°-crossings, S-bends, and 90°-bends. By varying the width of the splitter arms, a splitting ratio between 1% and 95% is achieved from the 1 × 2 splitters, while low-loss signal combining is demonstrated with the waveguide combiners. It is shown that a 3 dB improvement in the combiner excess loss can be achieved by increasing the bus width by 50 μm. The worst-case insertion loss of 50 × 100 μm waveguide crossings is measured to be 0.1 dB/crossing. An empirical method is proposed and used to estimate the insertion losses of on-board optical paths of a polymeric four-channel optical bus module. Good agreement is achieved between the predicted and measured values. Although the components and empirical method have been tailored for use in a multichannel optical bus architecture, they can be used for any on-board optical interconnection topology. © 1983-2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydraulic fracturing in clayey soils can be triggered by either tensile or shear failure. In this paper, the physical meanings of various equations to predict fracture initiation pressure proposed in the past are discussed using the cavity expansion theory. In particular, when fracturing pressure is plotted against initial confining pressure, published laboratory test results as well as analytical models show a linear relationship. When the slope is close to 2, fracture is initiated by tensile failure of the clay, whereas when the slope is close to 1, it is initiated by shear failure of the clay. In this study, the analytical models, validated only on laboratory test data to date, were applied to unique data from field grouting work in which extensive soil fracturing was carried out to improve the mechanical characteristics of the soft silty clay underlying a bell tower in Venice, Italy. By a careful assessment of initial confining pressure in the field, the variation in recorded injection pressures with confining pressure was examined. Results suggest that the fractures at this site were likely to be initiated by shear failure of the clay, and the values were similar to what was predicted by the model with the shear failure criterion. © 2013 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Finite Element (FE) pseudo-static analysis can provide a good compromise between simplified methods of dynamic analysis and time domain analysis. The pseudo-static FE approach can accurately model the in situ, stresses prior to seismic loading (when it follows a static analysis simulating the construction sequence) is relatively simple and not as computationally expensive as the time domain approach. However this method should be used with caution as the results can be sensitive to the choice of the mesh dimensions. In this paper two simple examples of pseudo-static finite element analysis are examined parametrically, a homogeneous slope and a cantilever retaining wall, exploring the sensitivity of the pseudo-static analysis results on the adopted mesh size. The mesh dependence was found to be more pronounced for problems with high critical seismic coefficients values (e.g. gentle slopes or small walls), as in these cases a generalised layer failure mechanism is developed simultaneously with the slope or wall mechanism. In general the mesh width was found not to affect notably the predicted value of critical seismic coefficient but to have a major impact on the predicted movements. © 2012 Elsevier Ltd.