41 resultados para Potassium levels
Resumo:
Design work involves uncertainty that arises from, and influences, the progressive development of solutions. This paper analyses the influences of evolving uncertainty levels on the design process. We focus on uncertainties associated with choosing the values of design parameters, and do not consider in detail the issues that arise when parameters must first be identified. Aspects of uncertainty and its evolution are discussed, and a new task-based model is introduced to describe process behaviour in terms of changing uncertainty levels. The model is applied to study two process configuration problems based on aircraft wing design: one using an analytical solution and one using Monte-Carlo simulation. The applications show that modelling uncertainty levels during design can help assess management policies, such as how many concepts should be considered during design and to what level of accuracy. © 2011 Springer-Verlag.
Resumo:
In this paper, the effect of seal clearance on the efficiency of a turbine with a shrouded rotor is compared with the effect of the tip clearance when the same turbine has an unshrouded rotor. The shrouded versus unshrouded comparison was undertaken for two turbine stage designs one having 50% reaction the other having 24% reaction. Measurements for a range of clearances, including very small clearances, showed three important phenomena. Firstly, as the clearance is reduced, there is a "break-even clearance" at which both the shrouded turbine and the unshrouded turbine have the same efficiency. If the clearance is reduced further, the unshrouded turbine performs better than the shrouded turbine, with the difference at zero clearance termed the "offset loss". This is contrary to the traditional assumption that both shrouded and unshrouded turbines have the same efficiency at zero clearance. The physics of the break-even clearance and the offset loss are discussed. Secondly, the use of a lower reaction had the effect of reducing the tip leakage efficiency penalty for both the shrouded and the unshrouded turbines. In order to understand the effect of reaction on the tip leakage, an analytical model was used and it was found that the tip leakage efficiency penalty should be understood as the dissipated kinetic energy rather than either the tip leakage mass flow rate or the tip leakage loss coefficient. Thirdly, it was also observed that, at a fixed flow coefficient, the fractional change in the output power with clearance was approximately twice the fractional change in efficiency with clearance. This was explained by using an analytical model. © 2010 by ASME.
Resumo:
Capability loss simulators give designers a brief experience of some of the functional effects of capability loss. They are an effective method of helping people to understand the impact of capability loss on product use. However, it is also important that designers know what levels of loss are being simulated and how they relate to the user population. The study in this paper tested the Cambridge Simulation Glasses with 25 participants to determine the effect of different numbers of glasses on a person's visual acuity. This data is also related to the glasses' use in usability assessment. A procedure is described for determining the number of simulator glasses with which the visual detail on a product is just visible. This paper then explains how to calculate the proportion of the UK population who would be unable to distinguish that detail.
Resumo:
The origin of the transient crosstalk (TC) in a phase-only LCOS based WSS using a Fourier transform setup was investigated and identified. Two methods were proposed to reduce the TC by at least 5dB without the need to modify the optics or electronics in use. © 2013 OSA.
Resumo:
The monovalent potassium doped manganites Pr0.6Sr 0.4-xKxMnO3 (x = 0.05-0.2) are characterized using the complementary magnetic susceptibility and electron resonance methods. In paramagnetic phase the temperature variations of the inverse magnetic susceptibility and the inverse intensity of resonance signal obey the Curie-Weiss law. A similarity in temperature variation of resonance signal width and the adiabatic polaron conductivity points to the polaron mechanism controlling the resonance linewidth. The low temperature limit of the pure paramagnetic phase is determined from the electron resonance spectra revealing the mixed phase spread down to the Curie temperature. © 2013 Elsevier B.V. All rights reserved.
Resumo:
The origin of the transient crosstalk (TC) in a phase-only LCOS based WSS using a Fourier transform setup was investigated and identified. Two methods were proposed to reduce the TC by at least 5dB without the need to modify the optics or electronics in use. © 2013 OSA.
Resumo:
In this paper, the effect of seal clearance on the efficiency of a turbine with a shrouded rotor is compared with the effect of the tip clearance when the same turbine has an unshrouded rotor. The shrouded versus unshrouded comparison was undertaken for two turbine stage designs one having 50% reaction, the other having 24% reaction. Measurements for a range of clearances, including very small clearances, showed three important phenomena. Firstly, as the clearance is reduced, there is a "break-even clearance" at which both the shrouded turbine and the unshrouded turbine have the same efficiency. If the clearance is reduced further, the unshrouded turbine performs better than the shrouded turbine, with the difference at zero clearance termed the "offset loss." This is contrary to the traditional assumption that both shrouded and unshrouded turbines have the same efficiency at zero clearance. The physics of the break-even clearance and the offset loss are discussed. Secondly, the use of a lower reaction had the effect of reducing the tip leakage efficiency penalty for both the shrouded and the unshrouded turbines. In order to understand the effect of reaction on the tip leakage, an analytical model was used and it was found that the tip leakage efficiency penalty should be understood as the dissipated kinetic energy rather than either the tip leakage mass flow rate or the tip leakage loss coefficient. Thirdly, it was also observed that, at a fixed flow coefficient, the fractional change in the output power with clearance was approximately twice the fractional change in efficiency with clearance. This was explained by using an analytical model. © 2014 by ASME.
Resumo:
There is considerable demand for sensors that are capable of detecting ultra-low concentrations (sub-PPM) of toxic gases in air. Of particular interest are NO2 and CO that are exhaust products of internal combustion engines. Electrochemical (EC) sensors are widely used to detect these gases and offer the advantages of low power, good selectivity and temporal stability. However, EC sensors are large (1 cm3), hand-made and thus expensive ($25). Consequently, they are unsuitable for the low-cost automotive market that demands units for less than $10. One alternative technology is SnO2 or WO3 resistive gas sensors that are fabricated in volume today using screen-printed films on alumina substrates and operate at 400°C. Unfortunately, they suffer from several disadvantages: power consumption is high 200 mW; reproducibility of the sensing element is poor; and cross-sensitivity is high. © 2013 IEEE.