68 resultados para Particulate emissions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon emissions from industry are dominated by production of goods in steel, cement plastic, paper, and aluminum. Demand for these materials is anticipated to double at least by 2050, by which time global carbon emissions must be reduced by at least 50%. To evaluate the challenge of meeting this target the global flows of these materials and their associated emissions are projected to 2050 under five technical scenarios. A reference scenario includes all existing and emerging efficiency measures but cannot provide sufficient reduction. The application of carbon sequestration to primary production proves to be sufficient only for cement The emissions target can always be met by reducing demand, for instance through product life extension, material substitution, or "light-weighting". Reusing components shows significant potential particularly within construction. Radical process innovation may also be possible. The results show that the first two strategies, based on increasing primary production, cannot achieve the required emissions reductions, so should be balanced by the vigorous pursuit of material efficiency to allow provision of increased material services with reduced primary production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A technique to measure wall flow variation in Diesel Particle Filters (DPFs) is described. In a recent paper, it was shown how the flow distribution in DPFs could be measured in a non-destructive manner. This involved measuring the progressive dilution of a tracer gas introduced at the "outlet" channel upstream end. In the present paper, a significant further improvement to this technique is described, in which only a single probe is required, rather than the two of the previous technique. The single, traversable, probe consists of a controllable flow sink, and slightly downstream, a tracer gas supply. By controlling the sink flow rate such that a very small concentration of tracer gas is aspirated into it, the total flow up to that location in the channel is determined. Typical results showing the axial variation in the wall flow for known wall blockage cases are presented. It is suggested that this technique could be used to interpret the soot loading in the filter channels in a non-intrusive way.