47 resultados para POLY(O-TOLUIDINE) FIBERS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Creep tests at ambient conditions have been carried out on Kevlar 49 and Technora yarns covering a wide stress spectrum (10-70% average breaking load) for a long period of time (up to a year). The results confirm that Kevlar 49 and Technora yarns show a nonlinear behavior at stresses below 40% of the breaking load and a linear behavior at stresses above 40%. The strength retention following creep for Kevlar 49 and Technora has also been examined. The results show a significant difference in the behavior of the two materials. Kevlar 49 appears to lose strength almost linearly with time, while Technora seems to lose strength much more rapidly. These results would have significant implications for design. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 Copyright © 2012 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trapped electrons, located close to the channel of a transistor, are promising as data storage elements in non-classical information processing. Cryogenic microwave spectroscopy has shown that these electrons give rise to high quality factor resonances in the drain current and a post excitation dynamic behaviour that is related to the system lifetime. Using a floating poly-silicon gate transistor, single shot spectroscopy is performed to characterise the dynamic behaviour during excitation. This behaviour is seen to be dominated by the decay of the transient component, which gives rise to oscillations around the high quality factor resonance. © 2012 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell-material interactions are crucial for cell adhesion and proliferation on biomaterial surfaces. Immobilization of biomolecules leads to the formation of biomimetic substrates, improving cell response. We introduced RGD (Arg-Gly-Asp) sequences on poly-ε-caprolactone (PCL) film surfaces using thiol chemistry to enhance Schwann cell (SC) response. XPS elemental analysis indicated an estimate of 2-3% peptide functionalization on the PCL surface, comparable with carbodiimide chemistry. Contact angle was not remarkably reduced; hence, cell response was only affected by chemical cues on the film surface. Adhesion and proliferation of Schwann cells were enhanced after PCL modification. Particularly, RGD immobilization increased cell attachment up to 40% after 6 h of culture. It was demonstrated that SC morphology changed from round to very elongated shape when surface modification was carried out, with an increase in the length of cellular processes up to 50% after 5 days of culture. Finally RGD immobilization triggered the formation of focal adhesion related to higher cell spreading. In summary, this study provides a method for immobilization of biomolecules on PCL films to be used in peripheral nerve repair, as demonstrated by the enhanced response of Schwann cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly-ε-caprolactone (PCL) is a biodegradable and biocompatible polymer used in tissue engineering for various clinical applications. Schwann cells (SCs) play an important role in nerve regeneration and repair. SCs attach and proliferate on PCL films but cellular responses are weak due to the hydrophobicity and neutrality of PCL. In this study, PCL films were hydrolysed and aminolysed to modify the surface with different functional groups and improve hydrophilicity. Hydrolysed films showed a significant increase in hydrophilicity while maintaining surface topography. A significant decrease in mechanical properties was also observed in the case of aminolysis. In vitro tests with Schwann cells (SCs) were performed to assess film biocompatibility. A short-time experiment showed improved cell attachment on modified films, in particular when amino groups were present on the material surface. Cell proliferation significantly increased when both treatments were performed, indicating that surface treatments are necessary for SC response. It was also demonstrated that cell morphology was influenced by physico-chemical surface properties. PCL can be used to make artificial conduits and chemical modification of the inner lumen improves biocompatibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetocaloric and transport properties are reported for novel poly- and nanocrystalline double composite manganites, La 0.8Sr 0.2MnO 3/La 0.7Ca 0.3MnO 3, prepared by the sol-gel method. Magnetic field dependence of magnetic entropy change is found to be stronger for the nano- than the polycrystalline composite. The remarkable broadening of the temperature interval, where the magnetocaloric effect occurs in poly- and nanocrystalline composites, causes the relative cooling power (RCP(S)) of the nanocrystalline composite to be reduced by only 10 compared to the Sr based polycrystalline phase. The RCP(S) of the polycrystalline composite becomes remarkably enhanced. The low temperature magnetoresistance is enhanced by 5 for the nanostructured composite. © 2012 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inspired by molecular mechanisms that cells exploit to sense mechanical forces and convert them into biochemical signals, chemists dream of designing mechanochemical switches integrated into materials. Using the adhesion protein fibronectin, whose multiple repeats essentially display distinct molecular recognition motifs, we derived a computational model to explain how minimalistic designs of repeats translate into the mechanical characteristics of their fibrillar assemblies. The hierarchy of repeat-unfolding within fibrils is controlled not only by their relative mechanical stabilities, as found for single molecules, but also by the strength of cryptic interactions between adjacent molecules that become activated by stretching. The force-induced exposure of cryptic sites furthermore regulates the nonlinearity of stress-strain curves, the strain at which such fibers break, and the refolding kinetics and fraction of misfolded repeats. Gaining such computational insights at the mesoscale is important because translating protein-based concepts into novel polymer designs has proven difficult.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the discovery of Carbon Nanotubes (CNTs) by Iijima in 1991[1, 2], there has been an explosion of research into the physical and chemical properties of this novel material. CNT based biosensors can play an important role in amperometric, immunosensor and nucleic-acid sensing devices, e.g. for detection of life threatening biological agents in time of war or in terrorist attacks, saving life and money for the NHS. CNTs offer unique advantages in several areas, like high surfacevolume ratio, high electrical conductivity, chemical stability and strong mechanical strength, and CNT based sensors generally have higher sensitivities and lower detection limit than conventional ones. In this review, recent advances in biosensors utilising carbon nanotubes and carbon nanotube fibres will be discussed. The synthesis methods, nanostructure approaches and current developments in biosensors using CNTs will be introduced in the first part. In the second part, the synthesis methods and up-to-date progress in CNT fibre biosensors will be reviewed. Finally, we briefly outline some exciting applications for CNT and CNT fibres which are being targeted. By harnessing the continual advancements in micro and nano- technology, the functionality and capability of CNT-based biosensors will be enhanced, thus expanding and enriching the possible applications that can be delivered by these devices. © 2012 Bentham Science Publishers. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review our recent exploratory investigations on mode division multiplexing using hollow-core photonic bandgap fibers (HC-PBGFs). Compared with traditional multimode fibers, HC-PBGFs have several attractive features such as ultra-low nonlinearities, low-loss transmission window around 2 μm etc. After having discussed the potential and challenges of using HC-PBGFs as transmission fibers for mode multiplexing applications, we will report a number of recent proof-of-concept results obtained in our group using direct detection receivers. The first one is the transmission of two 10.7 Gbit/s non-return to zero (NRZ) data signals over a 30 m 7-cell HC-PBGF using the offset mode launching method. In another experiment, a short piece of 19-cell HC-PBGF was used to transmit two 20 Gbit/s NRZ channels using a spatial light modulator for precise mode excitation. Bit-error-ratio (BER) performances below the forward-error-correction (FEC) threshold limit (3.3×10-3) are confirmed for both data channels when they propagate simultaneously. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tensile and compression properties of self-reinforced poly(ethylene terephthalate) (SrPET) composites has been investigated. SrPET composites or all-polymer composites have improved mechanical properties compared to the bulk polymer but with maintained recyclability. In contrast to traditional carbon/glass fibre reinforced composites, SrPET composites are very ductile, resulting in high failure strains without softening or catastrophic failure. In tension, the SrPET composites behave linear elastically until the fibre-matrix interface fails, at which point the stiffness starts decreasing. As the material is further strained, strain hardening occurs and the specimen finally fails at a global strain above 10%. In compression, the composite initially fails through fibre yielding, and at higher strains through fibre bending. The stress-strain response is reminiscent of an elastic-perfectly plastic material with a high strain to failure (typically over 10%). This indicates that SrPET composites are not only candidates as semi-structural composites but also as highly efficient energy absorbing materials. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is one of the most promising conducting polymers that can be used as transparent electrode or as buffer layer for organic electronic devices. However, when used as an electrode, its conductivity has to be optimized either by the addition of solvents or by post-deposition processing. In this work, we investigate the effect of the addition of the polar solvent dimethylsulfoxide (DMSO) to an aqueous PEDOT:PSS solution on its optical and electrical properties by the implementation of the Drude model for the analysis of the measured pseudo-dielectric function by Spectroscopic Ellipsometry from the near infrared to the visible-far ultraviolet spectral range. The results show that the addition of DMSO increases significantly the film conductivity, which reaches a maximum value at an optimum DMSO concentration as it has confirmed by experimentally measured conductivity values. The post-deposition thermal annealing has been found to have a smaller effect on the film conductivity. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this article was the determination of the degree of crystallinity of a series of heat-set poly(ethylene terephthalate) (PET) films and their study by thermomechanical analysis (TMA) in order to elucidate a peculiar behaviour that takes place around the glass transition region. For this purpose, amorphous cast Mylar films from DuPont were annealed at 115 °C for various periods of time. Four methods were used to study the crystallinity of the samples prepared: differential scanning calorimetry (DSC), density measurements (DM), wide-angle X-ray diffraction (WAXD), and Fourier transform infrared spectroscopy (FT-IR). From the results obtained, the following conclusions are drawn: amorphous PET Mylar films can be crystallized in a degree of about up to 30% after thermal treatment for 30 min (cold crystallization) above glass transition temperature. When these semicrystalline samples are subjected to TMA, they show a two step penetration of the probe into them, which decreases with the increase of the degree of crystallinity. The first step of penetration was attributed to the shrinkage of the amorphous or semicrystalline sample, which takes place on the glass transition temperature, while the second step was attributed to the continuous softening of the sample, and the reorganization of the matter which takes place on heating run due to cold crystallization. © 2008 Elsevier Ltd. All rights reserved.