53 resultados para Pé-duro
Resumo:
A novel CMOS compatible lateral thyristor is proposed in this paper. Its thyristor conduction is fully controlled by a p-MOS gate. Loss of MOS control due to parasitic latch-up has been eliminated and triggering of the main thyristor at lower forward current achieved. The device operation has been verified by 2-D numerical simulations and experimental fabrication.
Resumo:
A novel pair of the E- and Z-isomeric 1R,4R-2-(4-heptyloxyphenyl)-benzylidene-p-menthan-3-ones has been prepared and the influence of distinctions in their molecular geometry on macroscopic properties of liquid crystal systems with the induced supra-molecular helical structure has been studied. The significantly lower helical twisting power of the chiral Z-isomer in comparison with that of E- one has been confirmed in the case of induced cholesteric systems based on 4-pentyl-4-cyanobiphenyl. The phase behavior and ferroelectric characteristics have been investigated for smectic-C* compositions based on the eutectic mixture of the homological 4-hexyloxyphenyl-4'-hexyloxy- and 4-hexyloxyphenyl-4'-octyloxybenzoates containing the novel isomeric chiral dopants. The spontaneous polarisation of the opposite signs induced by the isomeric chiral components has been revealed for the compositions studied. Distinctions in phase states, absolute values of the spontaneous polarization, smectic tilt angle and rotation viscosity of the systems obtained are discussed.
Resumo:
Some 1R,4R-2-(4-phenylbenzylidene)-p-menthane-3-one derivatives containing the ether or ester linking group between benzene rings of the arylidene fragment have been studied as chiral dopants in ferroelectric liquid crystal systems based on the eutectic mixture (1:1) of two phenylbenzoate derivatives CmH2m+1OC6H4COOC6 H4OCnH2n+1 (n = 6; m = 8, 10). The ferroelectric properties of these compositions (spontaneous polarization, rotation viscosity, smectic tilt angle as well as quantitative characteristics of their concentration dependences) were compared with those for systems including chiral dopants containing no linking group. Ferroelectric parameters of the induced ferroelectric compositions studied have been shown to depend essentially on the presence of the linking group between benzene rings and its nature as well as on the number of the benzene rings in the rigid molecular core of the chiral dopants used. For all ferroelectric liquid crystal systems studied, the influence of the chiral dopants on the thermal stability of N*, SmA and SmC* mesophases has been quantified. The influence of the linking group nature in the dopant molecules on the characteristics of the systems studied is discussed taking into account results of the conformational analysis carried out by the semi-empirical AM1 and PM3 methods.
Resumo:
(1R,4R)-2-(4-Hydroxybenzylidene)- and (1R,4R)-2-(4′-hydroxybiphenyl- 4-yl)methylene-p-menthan-3-ones were synthesized by condensation of (-)-menthone with O-tetrahydropyran-2-yl derivatives of 4-hydroxybenzaldehyde and 4′-hydroxy-4-formylbiphenyl, respectively, in a DMSO - base medium followed by the removal of the protective group. The reactions of these hydroxy derivatives with 4-alkylbenzoic, 4-alkyloxybenzoic, trans-4-alkylcyclohexane-4- carboxylic, and 4′-alkylbiphenyl-4-carboxylic acids afforded three series of new chiral esters. Compounds containing the arylidene moiety with three benzene rings were found to exhibit liquid-crystalline properties. The characteristic features of these compounds are discussed based on the results of studies by polarizing microscopy, differential scanning calorimetry, and small-angle X-ray scattering. It was found that the mesomorphic compounds under study can form a smectic A mesophase, twist grain boundary mesophases (TGBA), and blue phases in a wide temperature range. Upon dissolution of certain of chiral compounds in 4′-cyano-4-pentylbiphenyl, a rather high twisting power and the thermal stabilizing effect on mesophases were observed.
Resumo:
New 2-arylidene-p-menthane-3-ones containing the ether bridging group in the arylidene fragment have been synthesized and studied as chiral dopants in ferroelectric liquid crystal mixtures. The ferroelectric properties of these compositions were compared with those for compositions including chiral dopants that do not contain any bridging group. The influence of bridging group and terminal alkyl substituent length in the dopant molecule on the ferroelectric parameters of systems studied is discussed. © 2001 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint, a member of the Taylor & Francis Group,.
Resumo:
We report high hole and electron mobilities in nanocrystalline silicon (nc-Si:H) top-gate staggered thin-film transistors (TFTs) fabricated by direct plasma-enhanced chemical vapor deposition (PECVD) at 260°C. The n-channel nc-Si:H TFT with n+ nc-Si:H ohmic contacts shows a field-effect electron mobility (μnFE) of 130 cm2/Vs, which increases to 150 cm2/Vs with Cr-silicide contacts, along with a field-effect hole mobility (μhFE) of 25 cm2/Vs. To the best of our knowledge, the hole and electron mobilities reported here are the highest achieved to date using direct PECVD. © 2005 IEEE.
Resumo:
Modeling and numerical analysis of diamond m-i-p+ diode have been performed for static and transient analysis using TCAD Sentaurus platform. The simulation results are compared with experimental measurements. Prediction of transient turn-off characteristics of diamond m-i-p+ diode at high temperature is performed for the first time. It was found that unlike conventional Si diode, peak reverse current in diamond m-i-p+ diode reduces with increasing temperature while on-state voltage drop increases. © 2011 IEEE.