34 resultados para Organofunctional groups
Resumo:
The present paper proposes a unified geometric framework for coordinated motion on Lie groups. It first gives a general problem formulation and analyzes ensuing conditions for coordinated motion. Then, it introduces a precise method to design control laws in fully actuated and underactuated settings with simple integrator dynamics. It thereby shows that coordination can be studied in a systematic way once the Lie group geometry of the configuration space is well characterized. Applying the proposed general methodology to particular examples allows to retrieve control laws that have been proposed in the literature on intuitive grounds. A link with Brockett's double bracket flows is also made. The concepts are illustrated on SO(3), SE(2) and SE(3). © 2010 IEEE.
Resumo:
This paper studies the coordinated motion of a group of agents evolving on a Lie group. Left-or rightinvariance with respect to the absolute position on the group lead to two different characterizations of relative positions and two associated definitions of coordination (fixed relative positions). Conditions for each type of coordination are derived in the associated Lie algebra. This allows to formulate the coordination problem on Lie groups as consensus in a vector space. Total coordination occurs when both types of coordination hold simultaneously. The discussion in this paper provides a common geometric framework for previously published coordination control laws on SO(3), SE(2) and SE(3). The theory is illustrated on the group of planar rigid motion SE(2). © 2008 IEEE.
Resumo:
Liquefaction-induced lateral spreading has been responsible for widespread damage to pile foundations in many large earthquakes. The specification of inertial and kinematic pile and pile cap demands is a particularly challenging aspect of the analysis of pile foundations in laterally spreading soils. This paper presents and examines the results from a pair of dynamic centrifuge tests focusing on pile and pile cap demands for small pile groups with different pile spacings. Inertial and kinematic pile cap forces and lateral pile group interaction are examined with regard to the overturning mechanism that dominated the pile group response. © 2014 Taylor & Francis Group.
Resumo:
This work considers the problem of fitting data on a Lie group by a coset of a compact subgroup. This problem can be seen as an extension of the problem of fitting affine subspaces in n to data which can be solved using principal component analysis. We show how the fitting problem can be reduced for biinvariant distances to a generalized mean calculation on an homogeneous space. For biinvariant Riemannian distances we provide an algorithm based on the Karcher mean gradient algorithm. We illustrate our approach by some examples on SO(n). © 2010 Springer -Verlag Berlin Heidelberg.