135 resultados para Object Recognition


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose an algorithm for semantic segmentation based on 3D point clouds derived from ego-motion. We motivate five simple cues designed to model specific patterns of motion and 3D world structure that vary with object category. We introduce features that project the 3D cues back to the 2D image plane while modeling spatial layout and context. A randomized decision forest combines many such features to achieve a coherent 2D segmentation and recognize the object categories present. Our main contribution is to show how semantic segmentation is possible based solely on motion-derived 3D world structure. Our method works well on sparse, noisy point clouds, and unlike existing approaches, does not need appearance-based descriptors. Experiments were performed on a challenging new video database containing sequences filmed from a moving car in daylight and at dusk. The results confirm that indeed, accurate segmentation and recognition are possible using only motion and 3D world structure. Further, we show that the motion-derived information complements an existing state-of-the-art appearance-based method, improving both qualitative and quantitative performance. © 2008 Springer Berlin Heidelberg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new online multi-classifier boosting algorithm for learning object appearance models. In many cases the appearance model is multi-modal, which we capture by training and updating multiple strong classifiers. The proposed algorithm jointly learns the classifiers and a soft partitioning of the input space, defining an area of expertise for each classifier. We show how this formulation improves the specificity of the strong classifiers, allowing simultaneous location and pose estimation in a tracking task. The proposed online scheme iteratively adapts the classifiers during tracking. Experiments show that the algorithm successfully learns multi-modal appearance models during a short initial training phase, subsequently updating them for tracking an object under rapid appearance changes. © 2010 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a video-based system which interactively captures the geometry of a 3D object in the form of a point cloud, then recognizes and registers known objects in this point cloud in a matter of seconds (fig. 1). In order to achieve interactive speed, we exploit both efficient inference algorithms and parallel computation, often on a GPU. The system can be broken down into two distinct phases: geometry capture, and object inference. We now discuss these in further detail. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The capability to automatically identify shapes, objects and materials from the image content through direct and indirect methodologies has enabled the development of several civil engineering related applications that assist in the design, construction and maintenance of construction projects. This capability is a product of the technological breakthroughs in the area of image processing that has allowed for the development of a large number of digital imaging applications in all industries. In this paper, an automated and content based construction site image retrieval method is presented. This method is based on image retrieval techniques, and specifically those related with material and object identification and matches known material samples with material clusters within the image content. The results demonstrate the suitability of this method for construction site image retrieval purposes and reveal the capability of existing image processing technologies to accurately identify a wealth of materials from construction site images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The capability to automatically identify shapes, objects and materials from the image content through direct and indirect methodologies has enabled the development of several civil engineering related applications that assist in the design, construction and maintenance of construction projects. This capability is a product of the technological breakthroughs in the area of Image Processing that has allowed for the development of a large number of digital imaging applications in all industries. In this paper, an automated and content based shape recognition model is presented. This model was devised to enhance the recognition capabilities of our existing material based image retrieval model. The shape recognition model is based on clustering techniques, and specifically those related with material and object segmentation. The model detects the borders of each previously detected material depicted in the image, examines its linearity (length/width ratio) and detects its orientation (horizontal/vertical). The results emonstrate the suitability of this model for construction site image retrieval purposes and reveal the capability of existing clustering technologies to accurately identify the shape of a wealth of materials from construction site images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The lack of viable methods to map and label existing infrastructure is one of the engineering grand challenges for the 21st century. For instance, over two thirds of the effort needed to geometrically model even simple infrastructure is spent on manually converting a cloud of points to a 3D model. The result is that few facilities today have a complete record of as-built information and that as-built models are not produced for the vast majority of new construction and retrofit projects. This leads to rework and design changes that can cost up to 10% of the installed costs. Automatically detecting building components could address this challenge. However, existing methods for detecting building components are not view and scale-invariant, or have only been validated in restricted scenarios that require a priori knowledge without considering occlusions. This leads to their constrained applicability in complex civil infrastructure scenes. In this paper, we test a pose-invariant method of labeling existing infrastructure. This method simultaneously detects objects and estimates their poses. It takes advantage of a recent novel formulation for object detection and customizes it to generic civil infrastructure scenes. Our preliminary experiments demonstrate that this method achieves convincing recognition results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To manipulate an object skillfully, the brain must learn its dynamics, specifying the mapping between applied force and motion. A fundamental issue in sensorimotor control is whether such dynamics are represented in an extrinsic frame of reference tied to the object or an intrinsic frame of reference linked to the arm. Although previous studies have suggested that objects are represented in arm-centered coordinates [1-6], all of these studies have used objects with unusual and complex dynamics. Thus, it is not known how objects with natural dynamics are represented. Here we show that objects with simple (or familiar) dynamics and those with complex (or unfamiliar) dynamics are represented in object- and arm-centered coordinates, respectively. We also show that objects with simple dynamics are represented with an intermediate coordinate frame when vision of the object is removed. These results indicate that object dynamics can be flexibly represented in different coordinate frames by the brain. We suggest that with experience, the representation of the dynamics of a manipulated object may shift from a coordinate frame tied to the arm toward one that is linked to the object. The additional complexity required to represent dynamics in object-centered coordinates would be economical for familiar objects because such a representation allows object use regardless of the orientation of the object in hand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Chinese language is based on characters which are syllabic in nature. Since languages have syllabotactic rules which govern the construction of syllables and their allowed sequences, Chinese character sequence models can be used as a first level approximation of allowed syllable sequences. N-gram character sequence models were trained on 4.3 billion characters. Characters are used as a first level recognition unit with multiple pronunciations per character. For comparison the CU-HTK Mandarin word based system was used to recognize words which were then converted to character sequences. The character only system error rates for one best recognition were slightly worse than word based character recognition. However combining the two systems using log-linear combination gives better results than either system separately. An equally weighted combination gave consistent CER gains of 0.1-0.2% absolute over the word based standard system. Copyright © 2009 ISCA.