65 resultados para ORIENTED PYROLYTIC-GRAPHITE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tubular graphite cones (TGCs) with a single-crystal nanotip have been achieved by means of microwave plasma-assisted chemical vapor deposition using in-situ-evaporated Fe catalysts. The absence of the disorder-induced D band in Raman spectra revealed the single-crystalline feature of the nanotip. TGCs were found to stem from Fe catalytic carbon spherules on the order of 100 mum diameter, whose critical role in promoting both nucleation and plasma annealing in the formation of highly crystalline TGCs is discussed. The crystalline quality of such TGCs can be further verified by the investigation of their oxidative stability in air. All TGCs can survive up to 600 degrees C without any structural variations, and a few TGCs still survive with an anisotropic etched and stepped nanotip at temperatures up to 800 degrees C, much better than CNTs. Thus, TGCs with single crystalline nanotips are potential candidates for scanning probes in high-temperature oxygen-containing environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With recent developments in carbon-based electronics, it is imperative to understand the interplay between the morphology and electronic structure in graphene and graphite. We demonstrate controlled and repeatable vertical displacement of the top graphene layer from the substrate mediated by the scanning tunneling microscopy (STM) tip-sample interaction, manifested at the atomic level as well as over superlattices spanning several tens of nanometers. Besides the full-displacement, we observed the first half-displacement of the surface graphene layer, confirming that a reduced coupling rather than a change in lateral layer stacking is responsible for the triangular/honeycomb atomic lattice transition phenomenon, clearing the controversy surrounding it. Furthermore, an atomic scale mechanical stress at a grain boundary in graphite, resulting in the localization of states near the Fermi energy, is revealed through voltage-dependent imaging. A method of producing graphene nanoribbons based on the manipulation capabilities of the STM is also implemented.