58 resultados para Nuclear Energy


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The production of long-lived transuranic (TRU) waste is a major disadvantage of fission-based nuclear power. Previous work has indicated that TRU waste can be virtually eliminated in a pressurised water reactor (PWR) fuelled with a mixture of thorium and TRU waste, when all actinides are returned to the reactor after reprocessing. However, the optimal configuration for a fuel assembly operating this fuel cycle is likely to differ from the current configuration. In this paper, the differences in performance obtained in a reduced-moderation PWR operating this fuel cycle were investigated using WIMS. The chosen configuration allowed an increase of at least 20% in attainable burn-up for a given TRU enrichment. This will be especially important if the practical limit on TRU enrichment is low. The moderator reactivity coefficients limit the enrichment possible in the reactor, and this limit is particularly severe if a negative void coefficient is required for a fully voided core. Several strategies have been identified to mitigate this. Specifically, the control system should be designed to avoid a detrimental effect on moderator reactivity coefficients. The economic viability of this concept is likely to be dependent on the achievable thermal-hydraulic operating conditions. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nuclear power generation offers a reliable, low-impact and large-scale alternative to fossil fuels. However, concerns exist over the safety and sustainability of this method of power production, and it remains unpopular with some governments and pressure groups throughout the world. Fast thorium fuelled accelerator-driven sub-critical reactors (ADSRs) offer a possible route to providing further re-assurance regarding these concerns on account of their properties of enhanced safety through sub-critical operation combined with reduced actinide waste production from the thorium fuel source. The appropriate sub-critical margin at which these reactors should operate is the subject of continued debate. Commercial interests favour a small sub-critical margin in order to minimise the size of the accelerator needed for a given power output, whilst enhanced safety would be better satisfied through larger sub-critical margins to further minimise the possibility of a criticality excursion. Against this background, this paper examines some of the issues affecting reactor safety inherent within thorium fuel sources resulting from the essential Th90232→Th90233→Pa91233→U92233 breeding chain. Differences in the decay half-lives and fission and capture cross-sections of 233Pa and 233U can result in significant changes in the reactivity of the fuel following changes in the reactor power. Reactor operation is represented using a homogeneous lumped fast reactor model that can simulate the evolution of actinides and reactivity variations to first-order accuracy. The reactivity of the fuel is shown to increase significantly following a loss of power to the accelerator. Where the sub-critical operating margins are small this can result in a criticality excursion unless some form of additional intervention is made, for example through the insertion of control rods. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper investigates the effects of design parameters, such as cladding and coolant material choices, and operational phenomena, such as creep and fission product decay heat, on the tolerance of Accelerator Driven Subcritical Reactor (ADSR) fuel pin cladding to beam interruptions. This work aims to provide a greater understanding of the integration between accelerator and nuclear reactor technologies in ADSRs. The results show that an upper limit on cladding operating temperature of 550 °C is appropriate, as higher values of temperature tend to accelerate creep, leading to cladding failure much sooner than anticipated. The effect of fission product decay heat is to reduce significantly the maximum stress developed in the cladding during a beam-trip-induced transient. The potential impact of irradiation damage and the effects of the liquid metal coolant environment on the cladding are discussed. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper investigates the effect of the burnup coupling scheme on the numerical stability and accuracy of coupled Monte-Carlo depletion calculations. We show that in some cases, even the Predictor Corrector method with relatively short time steps can be numerically unstable. In addition, we present two possible extensions to the Euler predictor-corrector (PC) method, which is typically used in coupled burnup calculations. These modifications allow using longer time steps, while maintaining numerical stability and accuracy. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

DYN3D reactor dynamics nodal diffusion code was originally developed for the analysis of Light Water Reactors. In this paper, we demonstrate the feasibility of using DYN3D for modeling of fast spectrum reactors. A homogenized cross sections data library was generated using continuous energy Monte-Carlo code Serpent which provides significant modeling flexibility compared with traditional deterministic lattice transport codes and tolerable execution time. A representative sodium cooled fast reactor core was modeled with the Serpent-DYN3D code sequence and the results were compared with those produced by ERANOS code and with a 3D full core Monte-Carlo solution. Very good agreement between the codes was observed for the core integral parameters and power distribution suggesting that the DYN3D code with cross section library generated using Serpent can be reliably used for the analysis of fast reactors. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Monte Carlo burnup codes use various schemes to solve the coupled criticality and burnup equations. Previous studies have shown that the simplest methods, such as the beginning-of-step and middle-of-step constant flux approximations, are numerically unstable in fuel cycle calculations of critical reactors. Here we show that even the predictor-corrector methods that are implemented in established Monte Carlo burnup codes can be numerically unstable in cycle calculations of large systems. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper discusses the use of 241Am as proliferation resistant burnable poison for light water reactors. Homogeneous addition of small (as little as 0.12%) amounts of 241Am to the conventional light water reactor fuel results in significant increase in 238Pu/Pu ratio in the discharged fuel improving its proliferation resistance. Moreover, 241Am, admixed to the fuel, acts as burnable absorber allowing for substantial reduction in conventional reactivity control means without a notable fuel cycle length penalty. This is possible due to favorable characteristics of 241Am transmutation chain. The fuel cycle length penalty of introducing 241Am into the core is evaluated and discussed, as well as the impact of He production in the fuel pins and degradation of reactivity feedback coefficients. Proliferation resistance and reactivity control features related to the use of 241Am are compared to those of using 237Np, which has also been suggested as an additive to the conventional fuel in order to improve its proliferation resistance. It was found that 241Am admixture is more favorable than 237Np admixture because of the smaller fuel cycle length penalty and higher burnable poison savings. Addition of either 237Np or 241Am would provide substantial but not ultimate protection from misuse of Pu originating in the spent fuel from the commercial power reactors. Therefore, the benefits from application of the concept would have to be carefully evaluated against the additional costs and proliferation risks associated with manufacturing of 237Np or 241Am doped fuel. Although this work concerns specifically with PWRs, the conclusions could also be applied to BWRs and, to some extent, to other thermal spectrum reactor types. © 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This scoping study proposes using mixed nitride fuel in Pu-based high conversion LWR designs in order to increase the breeding ratio. The higher density fuel reduces the hydrogen-to-heavy metal ratio in the reactor which results in a harder spectrum in which breeding is more effective. A Resource-renewable Boiling Water Reactor (RBWR) assembly was modeled in MCNP to demonstrate this effect in a typical high conversion LWR design. It was determined that changing the fuel from (U,TRU)O2 to (U,TRU)N in the assembly can increase its fissile inventory ratio (fissile Pu mass divided by initial fissile Pu mass) from 1.04 to up to 1.17. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nowadays nuclear is the only greenhouse-free source that can appreciably respond to the increasing worldwide energy demand. The use of Thorium in the nuclear energy production may offer some advantages to accomplish this task. Extensive R&D on the thorium fuel cycle has been conducted in many countries around the world. Starting from the current nuclear waste policy, the EU-PUMA project focuses on the potential benefits of using the HTR core as a Pu/MA transmuter. In this paper the following aspects have been analysed: (1) the state-of-the-art of the studies on the use of Th in different reactors, (2) the use of Th in HTRs, with a particular emphasis on Th-Pu fuel cycles, (3) an original assessment of Th-Pu fuel cycles in HTR. Some aspects related to Thorium exploitation were outlined, particularly its suitability for working in pebble-bed HTR in a Th-Pu fuel cycle. The influence of the Th/Pu weight fraction at BOC in a typical HTR pebble was analysed as far as the reactivity trend versus burn-up, the energy produced per Pu mass, and the Pu isotopic composition at EOC are concerned. Although deeper investigations need to be performed in order to draw final conclusions, it is possible to state that some optimized Th percentage in the initial Pu/Th fuel could be suggested on the basis of the aim we are trying to reach. Copyright © 2009 Guido Mazzini et al.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Existing Monte Carlo burnup codes use various schemes to solve the coupled criticality and burnup equations. Previous studies have shown that the coupling schemes of the existing Monte Carlo burnup codes can be numerically unstable. Here we develop the Stochastic Implicit Euler method - a stable and efficient new coupling scheme. The implicit solution is obtained by the stochastic approximation at each time step. Our test calculations demonstrate that the Stochastic Implicit Euler method can provide an accurate solution to problems where the methods in the existing Monte Carlo burnup codes fail. © 2013 Elsevier Ltd. All rights reserved.