74 resultados para Multiresolution Visualization
Resumo:
Information visualization can accelerate perception, provide insight and control, and harness this flood of valuable data to gain a competitive advantage in making business decisions. Although such a statement seems to be obvious, there is a lack in the literature of practical evidence of the benefit of information visualization. The main contribution of this paper is to illustrate how, for a major European apparel retailer, the visualization of performance information plays a critical role in improving business decisions and in extracting insights from Redio Frequency Idetification (RFID)-based performance measures. In this paper, we identify - based on a literature review - three fundamental managerial functions of information visualization, namely as: a communication medium, a knowledge management means, and a decision-support instrument. Then, we provide - based on real industrial case evidence - how information visualization supports business decision-making. Several examples are provided to evidence the benefit of information visualization through its three identified managerial functions. We find that - depending on the way performance information is shaped, communicated, and made interactive - it not only helps decision making, but also offers a means of knowledge creation, as well as an appropriate communication channel. © 2014 World Scientific Publishing Company.
Resumo:
Space time cube representation is an information visualization technique where spatiotemporal data points are mapped into a cube. Information visualization researchers have previously argued that space time cube representation is beneficial in revealing complex spatiotemporal patterns in a data set to users. The argument is based on the fact that both time and spatial information are displayed simultaneously to users, an effect difficult to achieve in other representations. However, to our knowledge the actual usefulness of space time cube representation in conveying complex spatiotemporal patterns to users has not been empirically validated. To fill this gap, we report on a between-subjects experiment comparing novice users' error rates and response times when answering a set of questions using either space time cube or a baseline 2D representation. For some simple questions, the error rates were lower when using the baseline representation. For complex questions where the participants needed an overall understanding of the spatiotemporal structure of the data set, the space time cube representation resulted in on average twice as fast response times with no difference in error rates compared to the baseline. These results provide an empirical foundation for the hypothesis that space time cube representation benefits users analyzing complex spatiotemporal patterns.
Resumo:
Space time cube representation is an information visualization technique where spatiotemporal data points are mapped into a cube. Fast and correct analysis of such information is important in for instance geospatial and social visualization applications. Information visualization researchers have previously argued that space time cube representation is beneficial in revealing complex spatiotemporal patterns in a dataset to users. The argument is based on the fact that both time and spatial information are displayed simultaneously to users, an effect difficult to achieve in other representations. However, to our knowledge the actual usefulness of space time cube representation in conveying complex spatiotemporal patterns to users has not been empirically validated. To fill this gap we report on a between-subjects experiment comparing novice users error rates and response times when answering a set of questions using either space time cube or a baseline 2D representation. For some simple questions the error rates were lower when using the baseline representation. For complex questions where the participants needed an overall understanding of the spatiotemporal structure of the dataset, the space time cube representation resulted in on average twice as fast response times with no difference in error rates compared to the baseline. These results provide an empirical foundation for the hypothesis that space time cube representation benefits users when analyzing complex spatiotemporal patterns.