82 resultados para Modulus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis is presented of a database of 67 tests on 21 clays and silts of undrained shear stress-strain data of fine-grained soils. Normalizations of secant G in terms of initial mean effective stress p9 (i.e., G=p9 versus log g) or undrained shear strength cu (i.e., G=cu versus log g) are shown to be much less successful in reducing the scatter between different clays than the approach that uses the maximum shear modulus,Gmax, a technique still not universally adopted by geotechnical researchers and constitutive modelers. Analysis of semiempirical expressions forGmax is presented and a simple expression that uses only a void-ratio function and a confining-stress function is proposed. This is shown to be superior to a Hardin-style equation, and the void ratio function is demonstrated as an alternative to an overconsolidation ratio (OCR) function. To derive correlations that offer reliable estimates of secant stiffness at any required magnitude of working strain, secant shear modulus G is normalized with respect to its small-strain value Gmax, and shear strain g is normalized with respect to a reference strain gref at which this stiffness has halved. The data are corrected to two standard strain rates to reduce the discrepancy between data obtained from static and cyclic testing. The reference strain gref is approximated as a function of the plasticity index.Aunique normalized shear modulus reduction curve in the shape of a modified hyperbola is fitted to all the available data up to shear strains of the order of 1%. As a result, good estimates can be made of the modulus reduction G/Gmax ±30% across all strain levels in approximately 90% of the cases studied. New design charts are proposed to update the commonly used design curves. © 2013 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current generation of advanced gravitational wave detectors utilize titania-doped tantala/silica multilayer stacks for their mirror coatings. The properties of the low-refractive-index silica are well known; however, in the absence of detailed direct measurements, the material parameters of Young's modulus and coefficient of thermal expansion (CTE) of the high refractive index material, titania-doped tantala, have been assumed to be equal to values measured for pure tantala coatings. In order to ascertain the true values necessary for thermal noise calculations, we have undertaken measurements of Young's modulus and CTE through the use of nanoindentation and thermal-bending measurements. The measurements were designed to assess the effects of titania doping concentration and post-deposition heat-treatment on the measured values in order to evaluate the possibility of optimizing material parameters to further improve thermal noise in the detector. Young's modulus measurements on pure tantala and 25% and 55% titania-doped tantala show a wide range of values, from 132 to 177 GPa, dependent on both titania concentration and heat-treatment. Measurements of CTE give values of (3.9 +/- 0.1) x 10^-6 K^-1 and (4.9 +/- 0.3) x 10^-6 K^-1 for 25% and 55% titania-doped tantala, respectively, without dependence on post-deposition heat-treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rates of erosive wear have been measured for a series of eight polyester-based one-component castable polyurethane elastomers, with widely varying mechanical properties. Erosion tests were conducted with airborne silica sand, 120μm in particle size, at an impact velocity of 50 ms-1 and impact angles of 30° and 90°. For these materials, which all showed similar values of rebound resilience, the erosion rate increased with increasing hardness, tensile modulus and tensile strength. These findings are at variance with those expected for wear by abrasion, perhaps because of differences in the strain rate or strain levels imposed on the elastomer during erosion and abrasion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A finite element study has been performed on the effects of holes and rigid inclusions on the elastic modulus and yield strength of regular honeycombs under biaxial loading. The focus is on honeycombs that have already been weakened by a small degree of geometrical imperfection, such as a random distribution of fractured cell walls, as these imperfect honeycombs resemble commercially available metallic foams. Hashin-Shtrikman lower and upper bounds and self-consistent estimates of elastic moduli are derived to provide reference solutions to the finite element calculations. It is found that the strength of an imperfect honeycomb is relatively insensitive to the presence of holes and inclusions, consistent with recent experimental observations on commercial aluminum alloy foams.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the fabrication and high frequency characterization of a capacitive nanoelectromechanical system (NEMS) switch using a dense array of horizontally aligned single-wall carbon nanotubes (CNTs). The nanotubes are directly grown onto metal layers with prepatterned catalysts with horizontal alignment in the gas flow direction. Subsequent wetting-induced compaction by isopropanol increases the nanotube density by one order of magnitude. The actuation voltage of 6 V is low for a NEMS device, and corresponds to CNT arrays with an equivalent Young's modulus of 4.5-8.5 GPa, and resistivity of under 0.0077 Ω·cm. The high frequency characterization shows an isolation of -10 dB at 5 GHz. © 2010 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Focused laser micromachining in an optical microscope system is used to prototype packages for optoelectronic devices and to investigate new materials with potential applications in packaging. Micromachined thin films are proposed as mechanical components to locate fibres and other optical and electrical components on opto-assemblies. This paper reports prototype structures which are micromachined in silicon carbide to produce beams 5 μm thick by (i) laser cutting a track in a SiC coated Si wafer, (ii) undercutting by anisotropic silicon etching using KOH in water, and (iii) trimming if necessary with the laser system. This approach has the advantage of fast turn around and proof of concept. Mechanical test data are obtained from the prototype SiC beam package structures by testing with a stylus profilometer. The Youngs modulus obtained for chemical vapour deposited silicon carbide is 360 +/- 50 GPa indicating that it is a promising material for packaging applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An explicit Wiener-Hopf solution is derived to describe the scattering of duct modes at a hard-soft wall impedance transition in a circular duct with uniform mean flow. Specifically, we have a circular duct r = 1, - ∞ < x < ∞ with mean flow Mach number M > 0 and a hard wall along x < 0 and a wall of impedance Z along x > 0. A minimum edge condition at x = 0 requires a continuous wall streamline r = 1 + h(x, t), no more singular than h = Ο(x1/2) for x ↓ 0. A mode, incident from x < 0, scatters at x = 0 into a series of reflected modes and a series of transmitted modes. Of particular interest is the role of a possible instability along the lined wall in combination with the edge singularity. If one of the "upstream" running modes is to be interpreted as a downstream-running instability, we have an extra degree of freedom in the Wiener-Hopf analysis that can be resolved by application of some form of Kutta condition at x = 0, for example a more stringent edge condition where h = Ο(x3/2) at the downstream side. The question of the instability requires an investigation of the modes in the complex frequency plane and therefore depends on the chosen impedance model, since Z = Z (ω) is essentially frequency dependent. The usual causality condition by Briggs and Bers appears to be not applicable here because it requires a temporal growth rate bounded for all real axial wave numbers. The alternative Crighton-Leppington criterion, however, is applicable and confirms that the suspected mode is usually unstable. In general, the effect of this Kutta condition is significant, but it is particularly large for the plane wave at low frequencies and should therefore be easily measurable. For ω → 0, the modulus fends to |R001| → (1 + M)/(1 -M) without and to 1 with Kutta condition, while the end correction tends to ∞ without and to a finite value with Kutta condition. This is exactly the same behaviour as found for reflection at a pipe exit with flow, irrespective if this is uniform or jet flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An electron cyclotron wave resonant methane plasma discharge was used for the high rate deposition of hydrogenated amorphous carbon (a-C:H). Deposition rates of up to ∼400 Å/min were obtained over substrates up to 2.5 in. in diameter with a film thickness uniformity of ∼±10%. The deposited films were characterised in terms of their mass density, sp3 and hydrogen contents, C-H bonding, intrinsic stress, scratch resistance and friction properties. The deposited films possessed an average sp3 content, mass density and refractive index of ∼58%, 1.76 g/cm3 and 2.035 respectively.Mechanical characterisation indicated that the films possessed very low steady-state coefficients of friction (ca. 0.06) and a moderate shear strength of ∼141 MPa. Nano-indentation measurements also indicated a hardness and elastic modulus of ∼16.1 and 160 GPa respectively. The critical loads required to induce coating failure were also observed to increase with ion energy as a consequence of the increase in degree of ion mixing at the interface. Furthermore, coating failure under scratch test conditions was observed to take place via fracture within the silicon substrate itself, rather than either in the coating or at the film/substrate interface. © 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A model has been developed to predict the erosive wear behaviour of elastomers under conditions of glancing impact by small hard particles. Previous work has shown the erosive wear mechanism of elastomers under these conditions to be similar in nature to that of abrasive wear by a sharp blade. The model presented here was developed from the model of Southern and Thomas for sliding abrasion, by combining their treatment of the growth of surface cracks with a model for particle impact in which the force - displacement relationship for an idealized flat-ended punch on a semi-infinite elastic solid was assumed. In this way an expression for the erosive wear rate was developed, and compared with experimental measurements of wear rate for natural rubber, styrene - butadiene rubber and a highly crosslinked polybutadiene rubber. Good qualitative agreement was found between the predictions of the model and the experimental measurements. The variation of erosion rate with impact velocity, impact angle, particle size, elastic modulus of the material, coefficient of friction and fatigue properties were all well accounted for. Quantitative agreement was less good, and the effects of erosive particle shape could not be accounted for. The reasons for these discrepancies are discussed. © 1992 IOP Publishing Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The advantages of timber in wind turbine blade construction are discussed, and its properties emphasized. The use of timber/epoxy construction enables a high technical specification to be achieved. Tables are given for specific compressive strengths, fatigue strengths and flexural modulus for wind epoxy and glass reinforced polyester composites. Cost ratios are also discussed for the two materials and the cost advantage for wood is emphasized. (A.J.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to improve drilling mud design to cater for specific well situations, a more comprehensive knowledge and understanding of filter cake failure is needed. This paper describes experimental techniques aimed at directly probing the mechanical properties of filter cakes, without having to take into account artefacts due to fluid flow in the substrate. The use of rheometers allows us to determine shear yield stress and dynamic shear modulii of cakes grown on filter paper. A new scraping technique measures the strength and moisture profiles of typical filter cakes with a 0.1 mm resolution. This technique also allows us to probe the adhesion between the filter cake and its rock substrate. In addition, œdometer drained consolidation and unloading of a filter cake give us compression parameters useful for Cam Clay modelling. These independent measurements give similar results as to the elastic modulus of different filter cakes, showing an order of magnitude difference between water based and oil based cakes. We find that these standard cakes behave predominantly as purely elastic materials, with a sharp transition into plastic flow, allowing for the determination of a well-defined yield stress. The effect ofsolids loading on a given type of mud is also studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanoindentation is a popular technique for measuring the intrinsic mechanical response of bone and has been used to measure a single-valued elastic modulus. However, bone is a composite material with 20-80 nm hydroxyapatite plates embedded in a collagen matrix, and modern instrumentation allows for measurements at these small length scales. The present study examines the indentation response of bone and artificial gelatin-apatite nanocomposite materials across three orders of magnitude of lengthscale, from nanometers to micrometers, to isolate the composite phase contributions to the overall response. The load-displacement responses were variable and deviated from the quadratic response of homogeneous materials at small depths. The distribution of apparent elastic modulus values narrowed substantially with increasing indentation load. Indentation of particulate nanocomposites was simulated using finite element analysis. Modeling results replicated the convergence in effective modulus seen in the experiments. It appears that the apatite particles are acting as the continuous ("matrix") phase in bone and nanocomposites. Copyright © 2004 by ASME.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DLC films with different thicknesses (from 100 nm to 1.9 μm) were deposited using sputtering of graphite target in pure argon atmosphere without substrate heating. Film microstructures (sp2/sp3 ratio) and mechanical properties (modulus, hardness, stress) were characterized as a function of film thickness. A thin layer of aluminum about 60 nm was deposited on the DLC film surface. Laser micromachining of Al/DLC layer was performed to form microcantilever structures, which were released using a reactive ion etching system with SF6 plasma. Due to the intrinsic stress in DLC films and bimorph Al/DLC structure, the microcantilevers bent up with different curvatures. For DLC film of 100 nm thick, the cantilever even formed microtubes. The relationship between the bimorph beam bending and DLC film properties (such as stress, modulus, etc.) were discussed in details. © 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microfabricated cantilevers have recently attracted considerable attention as novel label-free chemical and biological biosensors which translate surface reactions into nanomechanical bending motion. However these studies have primarily focused on commercially available silicon cantilevers and relatively little work has been performed on cantilevers fabricated from other materials. Polymeric materials, offer significant advantages over silicon by virtue of the low Young's modulus, ease of microfabrication and reduced cost. In this paper, we report a non-vacuum fabrication process to produce arrays of SU8 cantilevers and demonstrate their application as chemical sensors using in situ reference cantilevers. © 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The contribution of the relative volumes of mineral and collagen to the nanomechanical behavior of articular calcified cartilage is explored using nanoindentation, quantitative backscattered electron imaging, and finite element analysis. Elastic modulus generally increases with mineral volume fraction. In highly mineralized tissues, the mineral occupation of water space significantly increases modulus with addition of little mineral. Mineral and organic phases were modeled using Hashin-Shtrikman composite bounds, calculated as a function of mineral volume fraction. Modulus values fall between the Hashin-Shtrikman bounds, indicating some intermediate degree of mineral phase connectivity. Such connectivity in ACC is greater than that achieved in bone and results from uniform collagen orientation and large volume of water space available for mineral occupation.