83 resultados para Mezza-Garcia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the results of a computational study of the post-processed Galerkin methods put forward by Garcia-Archilla et al. applied to the non-linear von Karman equations governing the dynamic response of a thin cylindrical panel periodically forced by a transverse point load. We spatially discretize the shell using finite differences to produce a large system of ordinary differential equations (ODEs). By analogy with spectral non-linear Galerkin methods we split this large system into a 'slowly' contracting subsystem and a 'quickly' contracting subsystem. We then compare the accuracy and efficiency of (i) ignoring the dynamics of the 'quick' system (analogous to a traditional spectral Galerkin truncation and sometimes referred to as 'subspace dynamics' in the finite element community when applied to numerical eigenvectors), (ii) slaving the dynamics of the quick system to the slow system during numerical integration (analogous to a non-linear Galerkin method), and (iii) ignoring the influence of the dynamics of the quick system on the evolution of the slow system until we require some output, when we 'lift' the variables from the slow system to the quick using the same slaving rule as in (ii). This corresponds to the post-processing of Garcia-Archilla et al. We find that method (iii) produces essentially the same accuracy as method (ii) but requires only the computational power of method (i) and is thus more efficient than either. In contrast with spectral methods, this type of finite-difference technique can be applied to irregularly shaped domains. We feel that post-processing of this form is a valuable method that can be implemented in computational schemes for a wide variety of partial differential equations (PDEs) of practical importance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ferroic-order parameters are useful as state variables in non-volatile information storage media because they show a hysteretic dependence on their electric or magnetic field. Coupling ferroics with quantum-mechanical tunnelling allows a simple and fast readout of the stored information through the influence of ferroic orders on the tunnel current. For example, data in magnetic random-access memories are stored in the relative alignment of two ferromagnetic electrodes separated by a non-magnetic tunnel barrier, and data readout is accomplished by a tunnel current measurement. However, such devices based on tunnel magnetoresistance typically exhibit OFF/ON ratios of less than 4, and require high powers for write operations (>1 × 10(6) A cm(-2)). Here, we report non-volatile memories with OFF/ON ratios as high as 100 and write powers as low as ∼1 × 10(4) A cm(-2) at room temperature by storing data in the electric polarization direction of a ferroelectric tunnel barrier. The junctions show large, stable, reproducible and reliable tunnel electroresistance, with resistance switching occurring at the coercive voltage of ferroelectric switching. These ferroelectric devices emerge as an alternative to other resistive memories, and have the advantage of not being based on voltage-induced migration of matter at the nanoscale, but on a purely electronic mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-biased Terfenol-D 2-2 composites exhibit high frequency of actuation and good magnetomechanical properties; however, their potential usefulness is highly dependent on their magnetoacoustic properties, particularly for ultrasonic applications. The speed of sound, c, and its variation with an externally applied magnetic field have been measured for the above composites using a 10 MHz longitudinal pulse. When the sound propagates parallel to the layers, the acoustic impedance was found to be independent of the external applied field, and lower than that for bulk Terfenol-D. The magnetomechanical coupling coefficient was found to be generally low (up to 0.35) and dependent on the volume ratio of materials, being higher for the specimens with greater content of Terfenol-D. The low attenuation, low acoustic impedance, and high frequency of actuation make this structure an interesting alternative for use in underwatersound navigation and ranging and other ultrasonic applications. When the pulse propagates orthogonal to the layers, c was found to vary by up to 3% with the application of an external field, but the acoustic attenuation was found to be very high due to the multiple reflections produced at the interfaces between the layers. This latter phenomenon has been calculated theoretically. © 2007 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Piezocomposites that can operate at frequencies above 30 MHz without spurious modes are required in order to develop sufficiently sensitive high frequency arrays for high resolution imaging. However, scaling down of conventional piezocomposite fabrication techniques becomes increasingly difficult as dimensions decrease with increasing frequency. The approach presented here is to use micro-moulded 1-3 piezocomposites and a distribution of piezoelectric segment size and separation. Innovative approaches to composite pattern design, based on a randomized spatial distribution, are presented. Micro-moulding techniques are shown to be suitable for fabricating composites with dimensions required for high frequency composites. Randomized piezocomposite patterns are modeled and are shown to suppress spurious modes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Integration of a piezoelectric high frequency ultrasound (HFUS) array with a microfabricated application specific integrated circuit (ASIC) performing a range of functions has several advantages for ultrasound imaging. The number of signal cables between the array/electronics and the data acquisition / imaging system can be reduced, cutting costs and increasing functionality. Electrical impedance matching is also simplified and the same approach can reduce overall system dimensions for applications such as endoscopic ultrasound. The work reported in this paper demonstrates early ASIC operation with a piezocomposite HFUS array operating at approximately 30 MHz. The array was tested in three different modes. Clear signals were seen in catch-mode, with an external transducer as a source of ultrasound, and in pitch-mode with the external transducer as a receiver. Pitch-catch mode was also tested successfully, using sequential excitation on three array elements, and viable signals were detected. However, these were relatively small and affected by interference from mixed-signal sources in the ASIC. Nevertheless, the functionality and compatibility of the two main components of an integrated HFUS - ASIC device have been demonstrated and the means of further optimization are evident.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A key issue in the fabrication of Terfenol-D 2-2 composites with internal magnetic field biasing is the selection of appropriate constituent materials to obtain high magnetostriction while keeping optimum magnetomechanical properties. The fabrication process is costly and time consuming and, therefore, numerical methods to predict their properties are useful. In this paper, finite element analysis (FEA) of the magnetostriction of such composites has been carried out using the commercial package ABAQUS. It has been shown that composites fabricated using Nd2Fe14B for the permanent magnetic material layers possess the highest internal fields within the Terfenol-D layers, although the overall strain of these composites is limited to approximately 800 × 10-6 due to the high elastic modulus of Nd2Fe14B. Simulations showed that the strain can be enhanced by choosing a different material with a lower elastic modulus for the permanent magnetic layer even though the internal field is lower. The simulations showed that the strain can increase by 12% if the Nd 2Fe14B layer is substituted by SmCo5; by 23% if it is substituted by Sm2Co17; and by 35% if it is substituted by Alnico. © 2008 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Carbon nanotube (CNT) fiber directly spun from an aerogel has a unique, well-aligned nanostructure (nano-pore and nano-brush), and thus provides high electro-catalytic activity and strong interaction with glucose oxidase enzyme. It shows great potential as a microelectrode for electrochemical biosensors. RESULTS: Cyclic voltammogram results indicate that post-synthesis treatments have great influence on the electrocatalytic activity of CNT fibers. Raman spectroscopy and electrical conductivity tests suggest that fibers annealed at 250 °C remove most of the impurities without damaging the graphite-like structure. This leads to a nano-porous morphology on the surface and the highest conductivity value (1.1 × 10 5 S m -1). Two CNT fiber microelectrode designs were applied to enhance their electron transfer behaviour, and it was found that a design using a 30 nm gold coating is able to linearly cover human physiological glucose level between 2 and 30 mmol L -1. The design also leads to a low detection limit of 25 μmol L -1. CONCLUSIONS: The high performance of CNT fibers not only offers exceptional mechanical and electrical properties, but also provides a large surface area and electron transfer pathway. They consequently make excellent bioactive microelectrodes for glucose biosensing, especially for potential use in implantable devices. © 2011 Society of Chemical Industry.