45 resultados para McMillan, Gordon


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a chiral nematic liquid crystal, the flexoelectric effect consists of a fast and linear coupling with an applied electric field. One difficulty to overcome is the unwinding of the helix that occurs at higher fields due to dielectric coupling. The use of bimesogens, which possess very low molecular dielectric anisotropy can improve flexoelectric characteristics. New bimesogen compounds have recently been synthesised that exhibit switching angles of 45° for applied fields of about 9 V.μm-1. In this paper, results from dielectric, electro-optic and dynamic light scattering measurements are reported for the new bimesogenic mixture. The dielectric anisotropy Δε changes sign with temperature and its values range between -0.2 and 0.3 for the temperature range studied. For Δε weakly positive, no electric field Freedericksz transition could be induced but Williams domains are observed instead. The large decrease in the bend elastic constant to viscosity coefficient ratio is attributed to a large increase in the bend viscosity coefficient. © 2001 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint, a member of the Taylor & Francis Group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New 2-arylidene-p-menthane-3-ones containing the ether bridging group in the arylidene fragment have been synthesized and studied as chiral dopants in ferroelectric liquid crystal mixtures. The ferroelectric properties of these compositions were compared with those for compositions including chiral dopants that do not contain any bridging group. The influence of bridging group and terminal alkyl substituent length in the dopant molecule on the ferroelectric parameters of systems studied is discussed. © 2001 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint, a member of the Taylor & Francis Group,.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a study on a series of dye guest-host mixtures using fluorescent perylene-based molecules as the guest dye in an organosiloxane host. These hosts have temperature-independent switching, at room temperature, through 90° for fields of the order of 10 Vrms/μm. Perylene molecules have been grafted onto the organosiloxane moiety via an alkyl spacer producing novel and rugged fluorescent dyes that are readily miscible in the host. Micro-separation of the low molar mass siloxane groups in the mesophases tend to form smectic phases. These planes produce an effective two-dimensional polymer backbonethat engenders the rugged mechanical properties of polymeric liquid crystals onto these low molar mass ferroelectric liquid crystals. In this study we show how the introduction of the dye molecules affects the electro-optic properties of the organosiloxane host. © 2001 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint, a member of the Taylor & Francis Group,.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A computational impact analysis methodology has been developed, based on modal analysis and a local contact force-deflection model. The contact law is based on Hertz contact theory while contact stresses are elastic, defines a modified contact theory to take account of local permanent indentation, and considers elastic recovery during unloading. The model was validated experimentally through impact testing of glass-carbon hybrid braided composite panels. Specimens were mounted in a support frame and the contact force was inferred from the deceleration of the impactor, measured by high-speed photography. A Finite Element analysis of the panel and support frame assembly was performed to compute the modal responses. The new contact model performed well in predicting the peak forces and impact durations for moderate energy impacts (15 J), where contact stresses locally exceed the linear elastic limit and damage may be deemed to have occurred. C-scan measurements revealed substantial damage for impact energies in the range of 30-50 J. For this regime the new model predictions might be improved by characterisation of the contact law hysteresis during the unloading phase, and a modification of the elastic vibration response in line with damage levels acquired during the impact. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new experimental configuration has been developed to examine the effects of flow on the autoignition of dilute diesel and biodiesel sprays, where the spray is injected in the form of monodisperse individual droplets at right angles to a hot air turbulent flow. The ignition location has been measured by monitoring the OH * chemiluminescence. A qualitative comparison of the flame behaviour between ethanol, acetone, heptane and biodiesel as fuels has also been carried out. With decreasing volatility of the fuel, the flame showed progressively a higher number of individual droplets burning, with the first autoignition spots appearing at random locations but in general earlier than the intense droplet-flame emission. The time-averaged autoignition length increased with increasing air velocity and with increasing intensity of the turbulence, while it decreased with the temperature and the droplet size. The data can be used for validating models for two-phase turbulent combustion. © 2012 Elsevier Inc.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract (40-Word Limit): A novel method for sending MIMO wireless signals to remote antenna units over a single multimode fibre is proposed. MIMO streams are sent via different fibre modes using mode division multiplexing. Combined channel measurements of 2km MMF and a typical indoor radio environment show in principle a 2x2 MIMO link at carrier frequencies up to 6GHz.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MIMO DSP is employed to improve the performance of degenerate mode-group division multiplexing in 8 km of conventional GI-MMF. Compensation of the mode coupling, induced by the launch and propagation, between and inside each degenerate mode-group is investigated in order to reduce the DSP complexity. © 2013 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel method for sending MIMO wireless signals to remote antenna units over a single multimode fibre is proposed. MIMO streams are sent via different fibre modes using mode division multiplexing. Combined channel measurements of 2km MMF and a typical indoor radio environment show in principle a 2×2 MIMO link at carrier frequencies up to 6GHz. © 2012 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RoFSO links are found to be susceptible to high-order laser distortion making conventional SFDR ineffective as a performance indicator. For the first time, peak input power is demonstrated as a service-independent bound on dynamic range. © OSA/ CLEO 2011.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper examines the impact of two simple precoding schemes on the capacity of 3 × 3 MIMO-enabled radio-over-fiber (RoF) distributed antenna systems (DAS) with excess transmit antennas. Specifically, phase-shift-only transmit beamforming and antenna selection are compared. It is found that for two typical indoor propagation scenarios, both strategies offer double the capacity gain that non-precoding MIMO DAS offers over traditional MIMO collocated antenna systems (CAS), with capacity improvements of 3.2-4.2 bit/s/Hz. Further, antenna selection shows similar performance to phase-only beamforming, differing by <0.5% and offering median capacities of 94 bit/s/Hz and 82 bit/s/Hz in the two propagation scenarios respectively. Because optical DASs enable precise, centralized control of remote antennas, they are well suited for implementing these beamforming schemes. Antenna selection, in particular, is a simple and effective means of increasing MIMO DAS capacity. © 2013 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper experimentally demonstrates that, for two representative indoor distributed antenna system (DAS) scenarios, existing radio-over-fiber (RoF) DAS installations can enhance the capacity advantages of broadband 3 × 3 multiple-input-multiple-output (MIMO) radio services without requiring additional fibers or multiplexing schemes. This is true for both single-and multiple-user cases with a single base station and multiple base stations. First, a theoretical example is used to illustrate that there is a negligible improvement in signal-to-noise ratio (SNR) when using a MIMO DAS with all N spatial streams replicated at N RAUs, compared with a MIMO DAS with only one of the N streams replicated at each RAU for N ≤ 4. It is then experimentally confirmed that a 3 × 3 MIMO DAS offers improved capacity and throughput compared with a 3 × 3 MIMO collocated antenna system (CAS) for the single-user case in two typical indoor DAS scenarios, i.e., one with significant line-of-sight (LOS) propagation and the other with entirely non-line-of-sight (NLOS) propagation. The improvement in capacity is 3.2% and 4.1%, respectively. Then, experimental channel measurements confirm that there is a negligible capacity increase in the 3 × 3 configuration with three spatial streams per antenna unit over the 3 × 3 configuration with a single spatial stream per antenna unit. The former layout is observed to provide an increase of ∼1% in the median channel capacity in both the single-and multiple-user scenarios. With 20 users and three base stations, a MIMO DAS using the latter layout offers median aggregate capacities of 259 and 233 bit/s/Hz for the LOS and NLOS scenarios, respectively. It is concluded that DAS installations can further enhance the capacity offered to multiple users by multiple 3 × 3 MIMO-enabled base stations. Further, designing future DAS systems to support broadband 3 × 3 MIMO systems may not require significant upgrades to existing installations for small numbers of spatial streams. © 2013 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the first time, mode group division multiplexing is achieved in a multimode fiber link using a 2-D Hermite-Gaussian mode launch. 20 Gb/s error-free transmission is achieved over a 250 m worst-case OM1 multimode fiber link. © OSA 2014.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article considers constant-pressure autoignition and freely propagating premixed flames of cold methane/air mixtures mixed with equilibrium hot products at high enough dilution levels to burn within the moderate to intense low oxygen dilution (MILD) combustion regime. The analysis is meant to provide further insight on MILD regime boundaries and to identify the effect of hot products speciation. As the mass fraction of hot products in the reactants mixture increases, autoignition occurs earlier. Species profiles show that the products/reactants mixture approximately equilibrates to a new state over a quick transient well before the main autoignition event, but as dilution becomes very high, this equilibration transient becomes more prominent and eventually merges with the primary ignition event. The dilution level at which these two reactive zones merge corresponds well with that marking the transition into the MILD regime, as defined according to conventional criteria. Similarly, premixed flame simulations at high dilutions show evidence of significant reactions involving intermediate species prior to the flame front. Since the premixed flame governing equations system demands that the species and temperature gradients be zero at the "cold" boundary, flame speed cannot be calculated above a certain dilution level. Up to this point, which again agrees reasonably well with the transition into the MILD regime according to convention, the laminar burning velocity was found to increase with hot product dilution while flame thickness remained largely unchanged. Some comments on the MILD combustion regime boundary definition for gas turbine applications are included. Copyright © Taylor & Francis Group, LLC.