63 resultados para Markov models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of hidden Markov models is placed in a connectionist framework, and an alternative approach to improving their ability to discriminate between classes is described. Using a network style of training, a measure of discrimination based on the a posteriori probability of state occupation is proposed, and the theory for its optimization using error back-propagation and gradient ascent is presented. The method is shown to be numerically well behaved, and results are presented which demonstrate that when using a simple threshold test on the probability of state occupation, the proposed optimization scheme leads to improved recognition performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new architecture which integrates recurrent input transformations (RIT) and continuous density HMMs. The basic HMM structure is extended to accommodate recurrent neural networks which transform the input observations before they enter the Gaussian output distributions associated with the states of the HMM. During training the parameters of both HMM and RIT are simultaneously optimized according to the Maximum Mutual Information (MMI) criterion. Results are presented for the E-set recognition task which demonstrate the ability of recurrent input transformations to exploit longer term correlations in the speech signal and to give improved discrimination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Models for simulating Scanning Probe Microscopy (SPM) may serve as a reference point for validating experimental data and practice. Generally, simulations use a microscopic model of the sample-probe interaction based on a first-principles approach, or a geometric model of macroscopic distortions due to the probe geometry. Examples of the latter include use of neural networks, the Legendre Transform, and dilation/erosion transforms from mathematical morphology. Dilation and the Legendre Transform fall within a general family of functional transforms, which distort a function by imposing a convex solution.In earlier work, the authors proposed a generalized approach to modeling SPM using a hidden Markov model, wherein both the sample-probe interaction and probe geometry may be taken into account. We present a discussion of the hidden Markov model and its relationship to these convex functional transforms for simulating and restoring SPM images.©2009 SPIE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conventional Hidden Markov models generally consist of a Markov chain observed through a linear map corrupted by additive noise. This general class of model has enjoyed a huge and diverse range of applications, for example, speech processing, biomedical signal processing and more recently quantitative finance. However, a lesser known extension of this general class of model is the so-called Factorial Hidden Markov Model (FHMM). FHMMs also have diverse applications, notably in machine learning, artificial intelligence and speech recognition [13, 17]. FHMMs extend the usual class of HMMs, by supposing the partially observed state process is a finite collection of distinct Markov chains, either statistically independent or dependent. There is also considerable current activity in applying collections of partially observed Markov chains to complex action recognition problems, see, for example, [6]. In this article we consider the Maximum Likelihood (ML) parameter estimation problem for FHMMs. Much of the extant literature concerning this problem presents parameter estimation schemes based on full data log-likelihood EM algorithms. This approach can be slow to converge and often imposes heavy demands on computer memory. The latter point is particularly relevant for the class of FHMMs where state space dimensions are relatively large. The contribution in this article is to develop new recursive formulae for a filter-based EM algorithm that can be implemented online. Our new formulae are equivalent ML estimators, however, these formulae are purely recursive and so, significantly reduce numerical complexity and memory requirements. A computer simulation is included to demonstrate the performance of our results. © Taylor & Francis Group, LLC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper we formulate the nonnegative matrix factorisation (NMF) problem as a maximum likelihood estimation problem for hidden Markov models and propose online expectation-maximisation (EM) algorithms to estimate the NMF and the other unknown static parameters. We also propose a sequential Monte Carlo approximation of our online EM algorithm. We show the performance of the proposed method with two numerical examples. © 2012 IFAC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although approximate Bayesian computation (ABC) has become a popular technique for performing parameter estimation when the likelihood functions are analytically intractable there has not as yet been a complete investigation of the theoretical properties of the resulting estimators. In this paper we give a theoretical analysis of the asymptotic properties of ABC based parameter estimators for hidden Markov models and show that ABC based estimators satisfy asymptotically biased versions of the standard results in the statistical literature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We show that the sensor localization problem can be cast as a static parameter estimation problem for Hidden Markov Models and we develop fully decentralized versions of the Recursive Maximum Likelihood and the Expectation-Maximization algorithms to localize the network. For linear Gaussian models, our algorithms can be implemented exactly using a distributed version of the Kalman filter and a message passing algorithm to propagate the derivatives of the likelihood. In the non-linear case, a solution based on local linearization in the spirit of the Extended Kalman Filter is proposed. In numerical examples we show that the developed algorithms are able to learn the localization parameters well.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We extend previous work on fully unsupervised part-of-speech tagging. Using a non-parametric version of the HMM, called the infinite HMM (iHMM), we address the problem of choosing the number of hidden states in unsupervised Markov models for PoS tagging. We experiment with two non-parametric priors, the Dirichlet and Pitman-Yor processes, on the Wall Street Journal dataset using a parallelized implementation of an iHMM inference algorithm. We evaluate the results with a variety of clustering evaluation metrics and achieve equivalent or better performances than previously reported. Building on this promising result we evaluate the output of the unsupervised PoS tagger as a direct replacement for the output of a fully supervised PoS tagger for the task of shallow parsing and compare the two evaluations. © 2009 ACL and AFNLP.