39 resultados para Macro releases


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a new approach for quantifying regions of interest (ROIs) in medical image data. Rotationally invariant shape descriptors (ISDs) were applied to 3D brain regions extracted from MRI scans of 5 Parkinson's patients and 10 control subjects. We concentrated on the thalamus and the caudate nucleus since prior studies have suggested they are affected in Parkinson's disease (PD). In the caudate, both the ISD and volumetric analyses found significant differences between control and PD subjects. The ISD analysis however revealed additional differences between the left and right caudate nuclei in both control and PD subjects. In the thalamus, the volumetric analysis showed significant differences between PD and control subjects, while ISD analysis found significant differences between the left and right thalami in control subjects but not in PD patients, implying disease-induced shape changes. These results suggest that employing ISDs for ROI characterization both complements and extends traditional volumetric analyses. © 2006 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Steel production is energy intensive so already has achieved impressive levels of energy efficiency. If the emissions associated with steel must be reduced in line with the requirements of the UK Climate Change Act, demand for new steel must be reduced. The strategies of 'material efficiency' aim to achieve such a reduction, while delivering the same final services. To meet the emissions targets set into UK law, UK consumption of steel must be reduced to 30 per cent of present levels by 2050. Previous work has revealed six strategies that could contribute to this target, and this paper presents an approximate analysis of the required transition. A macro-economic analysis of steel in the UK shows that while the steel industry is relatively small, the construction and manufacturing sectors are large, and it would be politically unacceptable to pursue options that lead to a major contraction in other sectors. Alternative business models are therefore required, and these are explored through four representative products--one for each final sector with particular emphasis given to options for reducing product weight, and extending product life. Preliminary evidence on the triggers that would lead to customers preferring these options is presented and organized in order to predict required policy measures. The estimated analysis of transitions explored in this paper is used to define target questions for future research in the area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single lap joints of woven GFRP composites have been investigated for impact induced damage modes using C-scan, X-ray micro tomography, imaging and finite element (FE) modelling. This has allowed for damage modes to be observed in 3D from macro to micro level-resulting in much better understanding of damage mechanisms and realistic FE modelling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The design and fabrication of a novel 2-scale topography dry electrode using macro and micro needles is presented. The macro needles enable biopotential measurements on hairy skin, the function of the micro needles is to decrease the electrode impedance even further by penetrating the outer skin layer. Also, a fast and reliable impedance characterization protocol is described. Based on this impedance measurement protocol, a comparison study is made between our dry electrode, 3 other commercial dry electrodes and a standard wet gel electrode. Promising results are already obtained with our electrodes which do not have skin piercing micro needles. For the proposed electrodes, three different conductive coatings (Ag/AgCl/Au) are compared. AgCl is found to be slightly better than Ag as coating material, while our Au coated electrodes have the highest impedance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding and controlling the hierarchical self-assembly of carbon nanotubes (CNTs) is vital for designing materials such as transparent conductors, chemical sensors, high-performance composites, and microelectronic interconnects. In particular, many applications require high-density CNT assemblies that cannot currently be made directly by low-density CNT growth, and therefore require post-processing by methods such as elastocapillary densification. We characterize the hierarchical structure of pristine and densified vertically aligned multi-wall CNT forests, by combining small-angle and ultra-small-angle x-ray scattering (USAXS) techniques. This enables the nondestructive measurement of both the individual CNT diameter and CNT bundle diameter within CNT forests, which are otherwise quantified only by delicate and often destructive microscopy techniques. Our measurements show that multi-wall CNT forests grown by chemical vapor deposition consist of isolated and bundled CNTs, with an average bundle diameter of 16 nm. After capillary densification of the CNT forest, USAXS reveals bundles with a diameter 4 m, in addition to the small bundles observed in the as-grown forests. Combining these characterization methods with new CNT processing methods could enable the engineering of macro-scale CNT assemblies that exhibit significantly improved bulk properties. © 2011 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the current work was to examine the human monocyte response to 444 ferritic stainless steel fibre networks. 316L austenitic fibre networks, of the same fibre volume fraction, were used as control surfaces. Fluorescence and scanning electron microscopies suggest that the cells exhibited a good degree of attachment and penetration throughout both networks. Lactate Dehydrogenase (LDH) and TNF-α releases were used as indicators of cytotoxicity and inflammatory responses respectively. LDH release indicated similar levels of monocyte viability when in contact with the 444 and 316L fibre networks. Both networks elicited a low level secretion of TNF-α, which was significantly lower than that of the positive control wells containing zymosan. Collectively, the results suggest that 444 ferritic and 316L austenitic networks induced similar cytotoxic and inflammatory responses from human monocytes. © 2012 Materials Research Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Avalanches, debris flows, and landslides are geophysical hazards, which involve rapid mass movement of granular solids, water and air as a single-phase system. The dynamics of a granular flow involve at least three distinct scales: the micro-scale, meso-scale, and the macro-scale. This study aims to understand the ability of continuum models to capture the micro-mechanics of dry granular collapse. Material Point Method (MPM), a hybrid Lagrangian and Eulerian approach, with Mohr-Coulomb failure criterion is used to describe the continuum behaviour of granular column collapse, while the micromechanics is captured using Discrete Element Method (DEM) with tangential contact force model. The run-out profile predicted by the continuum simulations matches with DEM simulations for columns with small aspect ratios ('h/r' < 2), however MPM predicts larger run-out distances for columns with higher aspect ratios ('h/r' > 2). Energy evolution studies in DEM simulations reveal higher collisional dissipation in the initial free-fall regime for tall columns. The lack of a collisional energy dissipation mechanism in MPM simulations results in larger run-out distances. Micro-structural effects, such as shear band formations, were observed both in DEM and MPM simulations. A sliding flow regime is observed above the distinct passive zone at the core of the column. Velocity profiles obtained from both the scales are compared to understand the reason for a slow flow run-out mobilization in MPM simulations. © 2013 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interactions between dislocations and grain boundaries play an important role in the plastic deformation of polycrystalline metals. Capturing accurately the behaviour of these internal interfaces is particularly important for applications where the relative grain boundary fraction is significant, such as ultra fine-grained metals, thin films and microdevices. Incorporating these micro-scale interactions (which are sensitive to a number of dislocation, interface and crystallographic parameters) within a macro-scale crystal plasticity model poses a challenge. The innovative features in the present paper include (i) the formulation of a thermodynamically consistent grain boundary interface model within a microstructurally motivated strain gradient crystal plasticity framework, (ii) the presence of intra-grain slip system coupling through a microstructurally derived internal stress, (iii) the incorporation of inter-grain slip system coupling via an interface energy accounting for both the magnitude and direction of contributions to the residual defect from all slip systems in the two neighbouring grains, and (iv) the numerical implementation of the grain boundary model to directly investigate the influence of the interface constitutive parameters on plastic deformation. The model problem of a bicrystal deforming in plane strain is analysed. The influence of dissipative and energetic interface hardening, grain misorientation, asymmetry in the grain orientations and the grain size are systematically investigated. In each case, the crystal response is compared with reference calculations with grain boundaries that are either 'microhard' (impenetrable to dislocations) or 'microfree' (an infinite dislocation sink). © 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the arena of vibration energy harvesting, the key technical challenges continue to be low power density and narrow operational frequency bandwidth. While the convention has relied upon the activation of the fundamental mode of resonance through direct excitation, this article explores a new paradigm through the employment of parametric resonance. Unlike the former, oscillatory amplitude growth is not limited due to linear damping. Therefore, the power output can potentially build up to higher levels. Additionally, it is the onset of non-linearity that eventually limits parametric resonance; hence, this approach can also potentially broaden the operating frequency range. Theoretical prediction and numerical modelling have suggested an order higher in oscillatory amplitude growth. An experimental macro-sized electromagnetic prototype (practical volume of ∼1800 cm3) when driven into parametric resonance, has demonstrated around 50% increase in half power band and an order of magnitude higher peak power density normalised against input acceleration squared (293 μW cm-3 m-2 s4 with 171.5 mW at 0.57 m s-2) in contrast to the same prototype directly driven at fundamental resonance (36.5 μW cm-3 m-2 s4 with 27.75 mW at 0.65 m s-2). This figure suggests promising potentials while comparing with current state-of-the-art macro-sized counterparts, such as Perpetuum's PMG-17 (119 μW cm-3 m-2 s4). © The Author(s) 2013.