46 resultados para Lithography, Dutch.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is increasing adoption of computer-based tools to support the product development process. Tolls include computer-aided design, computer-aided manufacture, systems engineering and product data management systems. The fact that companies choose to invest in tools might be regarded as evidence that tools, in aggregate, are perceived to possess business value through their application to engineering activities. Yet the ways in which value accrues from tool technology are poorly understood.

This report records the proceedings of an international workshop during which some novel approaches to improving our understanding of this problem of tool valuation were presented and debated. The value of methods and processes were also discussed. The workshop brought together British, Dutch, German and Italian researchers. The presenters included speakers from industry and academia (the University of Cambridge, the University of Magdeburg and the Politechnico de Torino)

The work presented showed great variety. Research methods include case studies, questionnaires, statistical analysis, semi-structured interviews, deduction, inductive reasoning, the recording of anecdotes and analogies. The presentations drew on financial investment theory, the industrial experience of workshop participants, discussions with students developing tools, modern economic theories and speculation on the effects of company capabilities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two near-ultraviolet (UV) sensors based on solution-grown zinc oxide (ZnO) nanowires (NWs) which are only sensitive to photo-excitation at or below 400 nm wavelength have been fabricated and characterized. Both devices keep all processing steps, including nanowire growth, under 100 °C for compatibility with a wide variety of substrates. The first device type uses a single optical lithography step process to allow simultaneous in situ horizontal NW growth from solution and creation of symmetric ohmic contacts to the nanowires. The second device type uses a two-mask optical lithography process to create asymmetric ohmic and Schottky contacts. For the symmetric ohmic contacts, at a voltage bias of 1 V across the device, we observed a 29-fold increase in current in comparison to dark current when the NWs were photo-excited by a 400 nm light-emitting diode (LED) at 0.15 mW cm(-2) with a relaxation time constant (τ) ranging from 50 to 555 s. For the asymmetric ohmic and Schottky contacts under 400 nm excitation, τ is measured between 0.5 and 1.4 s over varying time internals, which is ~2 orders of magnitude faster than the devices using symmetric ohmic contacts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we report on the realisation of a free space deposition process (FSD). For the first time the use of a moving support structure to deposit tracks of metal starting from a substrate and extending into free space is characterised. The ability to write metal shapes in free space has wide ranging applications in additive manufacturing and rapid prototyping where the tracks can be layered to build overhanging features without the use of fixed support structures (such as is used in selective laser melting (SLM) and stereo lithography (SLA)). We demonstrate and perform a preliminary characterisation of the process in which a soldering iron was used to deposit lead free solder tracks. The factors affecting the stability of tracks and the effect of operating parameters, temperature, velocity, initial track starting diameter and starting volume were measured. A series of 10 tracks at each setting were compared with a control group of tracks; the track width, taper and variation between tracks were compared. Notable results in free space track deposition were that the initial track diameter and volume affected the repeatability and quality of tracks. The standard deviation of mean track width of tracks from the constrained initial diameter group were half that of the unconstrained group. The amount of material fed to the soldering iron before commencing deposition affected the taper of tracks. At an initial volume of 7 mm3 and an initial track diameter of 0.8 mm, none of the ten tracks deposited broke or showed taper > ∼1°. The maximum deposition velocity for free space track deposition using lead-free solder was limited to 1.5 mm s-1. © 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper will cover several applications of a particular type of field emitter- the carbon nanotube (CNT). The growth of CNTs and their optimization for use in various applications including, parallel e-beam lithography, field emission displays and microwave sources, is considered. © 2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electron and hole conducting 10-nm-wide polymer morphologies hold great promise for organic electro-optical devices such as solar cells and light emitting diodes. The self-assembly of block-copolymers (BCPs) is often viewed as an efficient way to generate such materials. Here, a functional block copolymer that contains perylene bismide (PBI) side chains which can crystallize via π-π stacking to form an electron conducting microphase is patterned harnessing hierarchical electrohydrodynamic lithography (HEHL). HEHL film destabilization creates a hierarchical structure with three distinct length scales: (1) micrometer-sized polymer pillars, containing (2) a 10-nm BCP microphase morphology that is aligned perpendicular to the substrate surface and (3) on a molecular length scale (0.35-3 nm) PBI π-π-stacks traverse the HEHL-generated plugs in a continuous fashion. The good control over BCP and PBI alignment inside the generated vertical microstructures gives rise to liquid-crystal-like optical dichroism of the HEHL patterned films, and improves the electron conductivity across the film by 3 orders of magnitude. © 2013 American Chemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The introduction of new materials and processes to microfabrication has, in large part, enabled many important advances in microsystems, labon- a-chip devices, and their applications. In particular, capabilities for cost-effective fabrication of polymer microstructures were transformed by the advent of soft lithography and other micromolding techniques 1,2, and this led a revolution in applications of microfabrication to biomedical engineering and biology. Nevertheless, it remains challenging to fabricate microstructures with well-defined nanoscale surface textures, and to fabricate arbitrary 3D shapes at the micro-scale. Robustness of master molds and maintenance of shape integrity is especially important to achieve high fidelity replication of complex structures and preserving their nanoscale surface texture. The combination of hierarchical textures, and heterogeneous shapes, is a profound challenge to existing microfabrication methods that largely rely upon top-down etching using fixed mask templates. On the other hand, the bottom-up synthesis of nanostructures such as nanotubes and nanowires can offer new capabilities to microfabrication, in particular by taking advantage of the collective self-organization of nanostructures, and local control of their growth behavior with respect to microfabricated patterns. Our goal is to introduce vertically aligned carbon nanotubes (CNTs), which we refer to as CNT "forests", as a new microfabrication material. We present details of a suite of related methods recently developed by our group: fabrication of CNT forest microstructures by thermal CVD from lithographically patterned catalyst thin films; self-directed elastocapillary densification of CNT microstructures; and replica molding of polymer microstructures using CNT composite master molds. In particular, our work shows that self-directed capillary densification ("capillary forming"), which is performed by condensation of a solvent onto the substrate with CNT microstructures, significantly increases the packing density of CNTs. This process enables directed transformation of vertical CNT microstructures into straight, inclined, and twisted shapes, which have robust mechanical properties exceeding those of typical microfabrication polymers. This in turn enables formation of nanocomposite CNT master molds by capillary-driven infiltration of polymers. The replica structures exhibit the anisotropic nanoscale texture of the aligned CNTs, and can have walls with sub-micron thickness and aspect ratios exceeding 50:1. Integration of CNT microstructures in fabrication offers further opportunity to exploit the electrical and thermal properties of CNTs, and diverse capabilities for chemical and biochemical functionalization 3. © 2012 Journal of Visualized Experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Widespread approaches to fabricate surfaces with robust micro- and nanostructured topographies have been stimulated by opportunities to enhance interface performance by combining physical and chemical effects. In particular, arrays of asymmetric surface features, such as arrays of grooves, inclined pillars, and helical protrusions, have been shown to impart unique anisotropy in properties including wetting, adhesion, thermal and/or electrical conductivity, optical activity, and capability to direct cell growth. These properties are of wide interest for applications including energy conversion, microelectronics, chemical and biological sensing, and bioengineering. However, fabrication of asymmetric surface features often pushes the limits of traditional etching and deposition techniques, making it challenging to produce the desired surfaces in a scalable and cost-effective manner. We review and classify approaches to fabricate arrays of asymmetric 2D and 3D surface features, in polymers, metals, and ceramics. Analytical and empirical relationships among geometries, materials, and surface properties are discussed, especially in the context of the applications mentioned above. Further, opportunities for new fabrication methods that combine lithography with principles of self-assembly are identified, aiming to establish design principles for fabrication of arbitrary 3D surface textures over large areas. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a new approach for the fabrication and integration of vertically aligned forests of amorphous carbon nanowires (CNWs), using only standard lithography, oxygen plasma treatment, and thermal processing. The simplicity and scalability of this process, as well as the hierarchical organization of CNWs, provides a potential alternative to the use of carbon nanotubes and graphene for applications in microsystems and high surface area materials. The CNWs are highly branched at the nanoscale, and novel hierarchical microstructures with CNWs connected to a solid amorphous core are made by controlling the plasma treatment time. By multilayer processing we demonstrate deterministic joining of CNW micropillars into 3D sensing networks. Finally we show that these networks can be chemically functionalized and used for measurement of DNA binding with increased sensitivity. © 2011 American Chemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scalable and cost effective patterning of polymer structures and their surface textures is essential to engineer material properties such as liquid wetting and dry adhesion, and to design artificial biological interfaces. Further, fabrication of high-aspect-ratio microstructures often requires controlled deep-etching methods or high-intensity exposure. We demonstrate that carbon nanotube (CNT) composites can be used as master molds for fabrication of high-aspect-ratio polymer microstructures having anisotropic nanoscale textures. The master molds are made by growth of vertically aligned CNT patterns, capillary densification of the CNTs using organic solvents, and capillary-driven infiltration of the CNT structures with SU-8. The composite master structures are then replicated in SU-8 using standard PDMS transfer molding methods. By this process, we fabricated a library of replicas including vertical micro-pillars, honeycomb lattices with sub-micron wall thickness and aspect ratios exceeding 50:1, and microwells with sloped sidewalls. This process enables batch manufacturing of polymer features that capture complex nanoscale shapes and textures, while requiring only optical lithography and conventional thermal processing. © 2011 The Royal Society of Chemistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a novel method for controlling the growth orientation of individual carbon nanotube (CNT) microstructures on a silicon wafer substrate. Our method controls the CNT forest orientation by patterning the catalyst layer used in the CNTs growth on slanted KOH edges. The overlap of catalyst area on the horizontal bottom and sloped sidewall surfaces of the KOH-etched substrate enables precise variation of the growth direction. These inclined structures can profit from the outstanding mechanical, electrical, thermal, and optical properties of CNTs and can therefore improve the performance of several MEMS devices. Inclined CNT microstructures could for instance be used as cantilever springs in probe card arrays, as tips in dip-pen lithography, and as sensing element in advanced transducers. ©2009 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the production and testing of an ortho-planar one-way micro-valve. The main advantages of such valves are that they are very compact and can be made from a single flat piece of material. A previous paper presents and discusses a micro-valve assembly based on a spider spring. The present paper focuses on the valve assembly process and the valve performance.. Several prototypes with a bore of 0.2 mm have been built using two manufacturing techniques (μEDM and stereo-lithography) and tested for pressures up to 7 bars. © 2008 International Federation for Information Processing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The capability to focus electromagnetic energy at the nanoscale plays an important role in nanoscinece and nanotechnology. It allows enhancing light matter interactions at the nanoscale with applications related to nonlinear optics, light emission and light detection. It may also be used for enhancing resolution in microscopy, lithography and optical storage systems. Hereby we propose and experimentally demonstrate the nanoscale focusing of surface plasmons by constructing an integrated plasmonic/photonic on chip nanofocusing device in silicon platform. The device was tested directly by measuring the optical intensity along it using a near-field microscope. We found an order of magnitude enhancement of the intensity at the tip's apex. The spot size is estimated to be 50 nm. The demonstrated device may be used as a building block for "lab on a chip" systems and for enhancing light matter interactions at the apex of the tip.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A gate-modulated nanowire oxide photosensor is fabricated by electron-beam lithography and conventional dry etch processing.. The device characteristics are good, including endurance of up to 10(6) test cycles, and gate-pulse excitation is used to remove persistent photoconductivity. The viability of nanowire oxide phototransistors for high speed and high resolution applications is demonstrated, thus potentially expanding the scope of exploitation of touch-free interactive displays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compliant pneumatic actuators have attracted the interests of the robotics community especially for applications where large strokes are needed in delicate environments. This paper introduces a new type of compliant actuator that generates a large twisting deformation upon pressurization. This deformation is similar to torsion in solid mechanics, and can be characterized by a twisting angle along the longitudinal axis of the actuator. To produce prototype actuators, a new fabrication process is developed that uses soft lithography. With this process, prototype actuators with a width of 7mm and a thickness of 0.65mm have been produced that exhibit a twisting rotation of 6.5 degrees per millimeter length at a pressure of 178kPa. Besides design, fabrication and characterization, this paper will go into detail on stroke optimization. © 2013 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability to accurately design carbon nanofibre (CN) field emitters with predictable electron emission characteristics will enable their use as electron sources in various applications such as microwave amplifiers, electron microscopy, parallel beam electron lithography and advanced Xray sources. Here, highly uniform CN arrays of controlled diameter, pitch and length were fabricated using plasma enhanced chemical vapour deposition and their individual emission characteristics and field enhancement factors were probed using scanning anode field emission mapping. For a pitch of 10 µm and a CN length of 5 µm, the directly measured enhancement factors of individual CNs was 242, which was in excellent agreement with conventional geometry estimates (240). We show here direct empirical evidence that in regular arrays of vertically aligned CNs the overall enhancement factor is reduced when the pitch between emitters is less than half the emitter height, in accordance to our electrostatic simulations. Individual emitters showed narrow Gaussian-like field enhancement distributions, in excellent agreement with electric field simulations.