56 resultados para Limit theorems
Resumo:
Although increasing the turbine inlet temperature has traditionally proved the surest way to increase cycle efficiency, recent work suggests that the performance of future gas turbines may be limited by increased cooling flows and losses. Another limiting scenario concerns the effect on cycle performance of real gas properties at high temperatures. Cycle calculations of uncooled gas turbines show that when gas properties are modelled accurately, the variation of cycle efficiency with turbine inlet temperature at constant pressure ratio exhibits a maximum at temperatures well below the stoichiometric limit. Furthermore, the temperature at the maximum decreases with increasing compressor and turbine polytropic efficiency. This behaviour is examined in the context of a two-component model of the working fluid. The dominant influences come from the change of composition of the combustion products with varying air/fuel ratio (particularly the contribution from the water vapour) together with the temperature variation of the specific heat capacity of air. There are implications for future industrial development programmes, particularly in the context of advanced mixed gas-steam cycles.
Resumo:
Most tribological pairs carry their service load not just once but for a very large number of repeated cycles. During the early stages of this life, protective residual stresses may be developed in the near surface layers which enable loads which are of sufficient magnitude to cause initial plastic deformation to be accommodated purely elastically in the longer term. This is an example of the phenomenon of 'shakedown' and when its effects are incorporated into the design and operation schedule of machine components this process can lead to significant increases in specific loading duties or improvements in material utilization. Although the underlying principles can be demonstrated by reference to relatively simple stress systems, when a moving Hertzian pressure distribution in considered, which is the form of loading applicable to many contact problems, the situation is more complex. In the absence of exact solutions, bounding theorems, adopted from the theory of plasticity, can be used to generate appropriate load or shakedown limits so that shakedown maps can be drawn which delineate the boundaries between potentially safe and unsafe operating conditions. When the operating point of the contact lies outside the shakedown limit there will be an increment of plastic strain with each application of the load - these can accumulate leading eventually to either component failure or the loss of material by wear. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes a derivation of the adjoint low Mach number equations and their implementation and validation within a global mode solver. The advantage of using the low Mach number equations and their adjoints is that they are appropriate for flows with variable density, such as flames, but do not require resolution of acoustic waves. Two versions of the adjoint are implemented and assessed: a discrete-adjoint and a continuous-adjoint. The most unstable global mode calculated with the discrete-adjoint has exactly the same eigenvalue as the corresponding direct global mode but contains numerical artifacts near the inlet. The most unstable global mode calculated with the continuous-adjoint has no numerical artifacts but a slightly different eigenvalue. The eigenvalues converge, however, as the timestep reduces. Apart from the numerical artifacts, the mode shapes are very similar, which supports the expectation that they are otherwise equivalent. The continuous-adjoint requires less resolution and usually converges more quickly than the discrete-adjoint but is more challenging to implement. Finally, the direct and adjoint global modes are combined in order to calculate the wavemaker region of a low density jet. © 2011 Elsevier Inc.