42 resultados para LAYERED SILICATE NANOCOMPOSITES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concerns over loosely compacted fill slopes stability in Hong Kong arouse in the past few decades, since the Sau Mau Ping disasters in 1972 and 1976. Research conducted on loose fill slopes in the past few years aimed to understand the failure mechanisms of a loosely compacted fill slope. Recently, layering effect has been hypothesised to be a possible condition in the fill slopes leading to a fast flowslide triggered by a rise of water table. Centrifuge experiments were conducted to investigate the layering effect on a model granular slope and hence to determine the triggering mechanisms of seepage induced slope failure. Test results showed that slope failure can be easily triggered in layered fill model slopes when seepage is restricted and localised pore water pressure is allowed to build up within the slope. © 2006 Taylor & Francis Group, London.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stoichiometric Er silicate thin films, monosilicate (Er2SiO 5) and disilicate (Er2Si2O7), have been grown on c-Si substrates by rf magnetron sputtering. The influence of annealing temperature in the range 1000-1200 °C in oxidizing ambient (O 2) on the structural and optical properties has been studied. In spite of the known reactivity of rare earth silicates towards silicon, Rutherford backscattering spectrometry shows that undesired chemical reactions between the film and the substrate can be strongly limited by using rapid thermal treatments. Monosilicate and disilicate films crystallize at 1100 and 1200 °C, respectively, as shown by x-ray diffraction analysis; the crystalline structures have been identified in both cases. Moreover, photoluminescence (PL) measurements have demonstrated that the highest PL intensity is obtained for Er2Si2O7 film annealed at 1200 °C. In fact, this treatment allows us to reduce the defect density in the film, in particular by saturating oxygen vacancies, as also confirmed by the increase of the lifetime of the PL signal. © 2008 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the effects of thermal annealing performed in N2 or O2 ambient at 1200 °C on the structural and optical properties of Er silicate films having different compositions (Er2Si O 5,Er2 Si2 O7, and their mixture). We demonstrate that the chemical composition of the stoichiometric films is preserved after the thermal treatments. All different crystalline structures formed after the thermal annealing are identified. Thermal treatments in O 2 lead to a strong enhancement of the photoluminescence intensity, owing to the efficient reduction of defect density. In particular the highest optical efficiency is associated to Er ions in the α phase of Er 2 Si2 O7. © 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the structure and the room temperature luminescence of erbium silicate thin films deposited by rf magnetron sputtering. Films deposited on silicon oxide layers are characterized by good structural properties and excellent stability. The optical properties of these films are strongly improved by rapid thermal annealing processes performed in the range of temperature 800-1250 °C. In fact through the reduction of the defect density of the material, a very efficient room temperature photoluminescence at 1535 nm is obtained. We have also investigated the influence of the annealing ambient, by finding that treatments in O2 atmosphere are significantly more efficient in improving the optical properties of the material with respect to processes in N2. Upconversion effects become effective only when erbium silicate is excited with high pump powers. The evidence that all Er atoms (about 1022 cm-3) in erbium silicate films are optically active suggests interesting perspectives for optoelectronic applications of this material. © 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mille-feuille structured amorphous selenium (a-Se)-arsenic selenide (As2Se3) multi-layered thin film and a mixed amorphous Se-As2Se3 film is compared from a durability perspective and photo-electric perspective. The former is durable to incident laser induced degradation after numerous laser scans and does not crystallise till 105 of annealing, both of which are improved properties from the mixed evaporated film. In terms of photo-electric properties, the ratio between the photocurrent and the dark current improved whereas the increase of the dark current was higher than that of As2Se3 due to the unique current path developed within the mille-feuille structure. Implementing this structure into various amorphous semiconductors may open up a new possibility towards structure-sensitive amorphous photoconductors. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relative potency of common toughening mechanisms is explored for layered solids and particulate solids, with an emphasis on crack multiplication and plasticity. First, the enhancement in toughness due to a parallel array of cracks in an elastic solid is explored, and the stability of co-operative cracking is quantified. Second, the degree of synergistic toughening is determined for combined crack penetration and crack kinking at the tip of a macroscopic, mode I crack; specifically, the asymptotic problem of self-similar crack advance (penetration mode) versus 90 ° symmetric kinking is considered for an isotropic, homogeneous solid with weak interfaces. Each interface is treated as a cohesive zone of finite strength and toughness. Third, the degree of toughening associated with crack multiplication is assessed for a particulate solid comprising isotropic elastic grains of hexagonal shape, bonded by cohesive zones of finite strength and toughness. The study concludes with the prediction of R-curves for a mode I crack in a multi-layer stack of elastic and elastic-plastic solids. A detailed comparison of the potency of the above mechanisms and their practical application are given. In broad terms, crack tip kinking can be highly potent, whereas multiple cracking is difficult to activate under quasi-static conditions. Plastic dissipation can give a significant toughening in multi-layers especially at the nanoscale. © 2013 Springer Science+Business Media Dordrecht.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties of layered inorganic semiconductors can be manipulated by the insertion of foreign molecular species via a process known as intercalation. In the present study, we investigate the phenomenon of organic moiety (R-NH3I) intercalation in layered metal-halide (PbI2)-based inorganic semiconductors, leading to the formation of inorganic-organic (IO) perovskites [(R-NH3)2PbI4]. During this intercalation strong resonant exciton optical transitions are created, enabling study of the dynamics of this process. Simultaneous in situ photoluminescence (PL) and transmission measurements are used to track the structural and exciton evolution. On the basis of the experimental observations, a model is proposed which explains the process of IO perovskite formation during intercalation of the organic moiety through the inorganic semiconductor layers. The interplay between precursor film thickness and organic solution concentration/solvent highlights the role of van der Waals interactions between the layers, as well as the need for maintaining stoichiometry during intercalation. Nucleation and growth occurring during intercalation matches a Johnson-Mehl-Avrami-Kolmogorov model, with results fitting both ideal and nonideal cases.