48 resultados para Incremental mining
Resumo:
This paper presents an incremental learning solution for Linear Discriminant Analysis (LDA) and its applications to object recognition problems. We apply the sufficient spanning set approximation in three steps i.e. update for the total scatter matrix, between-class scatter matrix and the projected data matrix, which leads an online solution which closely agrees with the batch solution in accuracy while significantly reducing the computational complexity. The algorithm yields an efficient solution to incremental LDA even when the number of classes as well as the set size is large. The incremental LDA method has been also shown useful for semi-supervised online learning. Label propagation is done by integrating the incremental LDA into an EM framework. The method has been demonstrated in the task of merging large datasets which were collected during MPEG standardization for face image retrieval, face authentication using the BANCA dataset, and object categorisation using the Caltech101 dataset. © 2010 Springer Science+Business Media, LLC.
Resumo:
This paper focuses on document data, one of the most significant sources for technology intelligence. To help organisations use their knowledge in documents effectively, this research aims to identify what organizations really want from documents and what might be possible to obtain from them. The research involves a literature review, a series of in-depth/on-site interviews and a descriptive analysis of document mining applications. The output of the research includes: a document mining framework; an analysis of the current condition of document mining in technology-based organisations together with their future requirements; and guidelines for introducing document mining into an organisation along with a discussion on the practical issues that are faced by users. Copyright © 2011 Inderscience Enterprises Ltd.
Resumo:
This research proposes a method for extracting technology intelligence (TI) systematically from a large set of document data. To do this, the internal and external sources in the form of documents, which might be valuable for TI, are first identified. Then the existing techniques and software systems applicable to document analysis are examined. Finally, based on the reviews, a document-mining framework designed for TI is suggested and guidelines for software selection are proposed. The research output is expected to support intelligence operatives in finding suitable techniques and software systems for getting value from document-mining and thus facilitate effective knowledge management. Copyright © 2012 Inderscience Enterprises Ltd.