41 resultados para Hydroelectric generators
Resumo:
The Brushless Doubly-Fed Induction Generator (BDFIG) shows commercial promise for wind power generation due to its lower cost and higher reliability compared to the Doubly-Fed Induction Generator (DFIG). For the purposes of commercialisation, the BDFIG must meet grid codes at all times. Nowadays, all new wind generators have to ride through certain grid faults, and the Low-Voltage Ride Through (LVRT) capability has become one of the most important points on which to assess the performance a generator. This paper, for the first time, proposes a control scheme to enable the the BDFIG to ride through symmetrical voltage dips. Simulation results and experimental results on a prototype BDFIG show that the proposed scheme gives the capability to ride through low voltage faults. © 2011 IEEE.
Resumo:
Single grain, (RE)BCO bulk superconductors in large or complicated geometries are required for a variety of potential applications, such as motors and generators and magnetic shielding devices. As a result, top, multi-seeded, melt growth (TMSMG) has been investigated over the past two years in an attempt to enlarge the size of (RE)BCO single grains specifically for such applications. Of these multi-seeding techniques, so-called bridge seeding provides the best alignment of two seeds in a single grain growth process. Here we report, for the first time, the successful growth of YBCO using a special, 45{\deg} - 45{\deg}, arrangement of bridge-seeds. The superconducting properties, including trapped field, of the multi-seeded YBCO grains have been measured for different bridge lengths of the 45{\deg}- 45{\deg} bridge-seeds. The boundaries at the impinging growth front and the growth features of the top, multi-seeded surface and cross-section of the multi-seeded, samples have been analysed using optical microscopy. The results suggest that an impurity-free boundary between the two seeds of each leg of the bridge-seed can form when 45{\deg}- 45{\deg} bridge-seeds are used to enlarge the size of YBCO grains.
Resumo:
An experimental study of bleed and vortex generators in supersonic ow has been conducted. Methods were developed to analyze and directly compare the two systems' effects on turbulent boundary layers to better understand their potential to mitigate ow separation. LDA was used to measure two components of velocity in the boundary-layer for three cases|baseline, with bleed, or with a VG|at Mach numbers of 1.3, 1.5 and 1.8. The bleed system was comprised of a series of 2mm diameter normal holes operated at different suction rates, removing up to 10% of the incoming boundary layer. Three VG shapes were tested only at Mach 1.5 and 1.8. Measurements of the evolution of Hi and Cf downstream of each device indicate that Hi is not an appropriate parameter to gauge the effectiveness of vortex generators due to boundary layer wake distortion. The skin friction coeficient Cf may be a more appropriate measure. Similar increases in Cf were generated by VGs and bleed. The recovery to baseline conditions downstream of bleed was sensitive to Mach number, and more investigation of that effect will be required. Copyright © 2012 by University of Cambridge.
Resumo:
The Brushless Doubly-Fed Induction Generator (Brushless DFIG) shows commercial promise for wind power generation due to its lower cost and higher reliability when compared with the conventional Doubly-Fed Induction Generator (DFIG). In the most recent grid codes, wind generators are required to be able to ride through a low voltage fault and meet the reactive current demand from the grid. Hence, a Low-Voltage Ride-Through (LVRT) capability is important for wind generators which are integrated into the grid. In this paper the authors propose a control strategy enabling the Brushless DFIG to successfully ride through a symmetrical voltage dip. The control strategy has been implemented on a 250 kW Brushless DFIG and the experimental results indicate that LVRT is possible without a crowbar.
Resumo:
HTS racetrack coils are becoming important elements of an emerging number of superconducting devices such as generators or motors. In these devices the issue of AC loss is crucial, as performance and cooling power are derived from this quantity. This paper presents a comparative study of transport AC loss in two different types of 2G HTS racetrack coils. In this study, both experimental measurements and computer simulation approaches were employed. All the experiments were performed using classical AC electrical method. The finite-element computer model was used to estimate electromagnetic properties and calculate transport AC loss. The main difference between the characterized coils is covered inside tape architectures. While one coil uses tape based on RABITS magnetic substrate, the second coil uses a non-magnetic tape. Ferromagnetic loss caused by a magnetic substrate is an important issue involved in the total AC loss. As a result, the coil with the magnetic substrate surprised with high AC loss and rather low performance. © 2013 Elsevier B.V. All rights reserved.
Resumo:
The brushless doubly fed induction generator (BDFIG) shows commercial promise for wind power generation due to its lower cost and higher reliability when compared with the conventional DFIG. In the most recent grid codes, wind generators are required to be able to ride through a low-voltage fault and meet the reactive current demand from the grid. A low-voltage ride-through (LVRT) capability is therefore important for wind generators which are integrated into the grid. In this paper, the authors propose a control strategy enabling the BDFIG to successfully ride through a symmetrical voltage dip. The control strategy has been implemented on a 250-kW BDFIG, and the experimental results indicate that the LVRT is possible without a crowbar. © 1982-2012 IEEE.
Resumo:
HTS racetrack coils are becoming important elements of an emerging number of superconducting devices such as generators or motors. In these devices the issue of AC loss is crucial, as performance and cooling power are derived from this quantity. This paper presents a comparative study of transport AC loss in two different types of 2G HTS racetrack coils. In this study, both experimental measurements and computer simulation approaches were employed. All the experiments were performed using classical AC electrical method. The finite-element computer model was used to estimate electromagnetic properties and calculate transport AC loss. The main difference between the characterized coils is covered inside tape architectures. While one coil uses tape based on RABITS magnetic substrate, the second coil uses a non-magnetic tape. Ferromagnetic loss caused by a magnetic substrate is an important issue involved in the total AC loss. As a result, the coil with the magnetic substrate surprised with high AC loss and rather low performance. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Pancake or racetrack coils wound with second generation high-temperature superconductors (2G HTSs) are important elements for numerous applications of HTS. The applications of these coils are primarily in rotating machines such as motors and generators where they must withstand external magnetic fields from various orientations. The characterization of 2G HTS coils is mostly focused on AC loss assessment, critical current and maximum magnetic field evaluation. In this study, racetrack coils will be placed in different orientations of external magnetic fields - Jc (Ic) versus angle measurements will be performed and interpreted. Full attention is paid to studies of anisotropy Jc versus angle curves for short samples of 2G HTS tapes. As will be shown, the shape of the Jc versus angle curves for tapes has a strong influence on the Jc (Ic) versus angle curves for coils. In this work, a unique and unpredicted behavior of the Jc versus angle curves for the 2G HTS racetrack coils was found. This will be analyzed and fully explained. © 2013 IOP Publishing Ltd.
Resumo:
The coalescence and mixing of a sessile and an impacting liquid droplet on a solid surface are studied experimentally and numerically in terms of lateral separation and droplet speed. Two droplet generators are used to produce differently colored droplets. Two high-speed imaging systems are used to investigate the impact and coalescence of the droplets in color from a side view with a simultaneous gray-scale view from below. Millimeter-sized droplets were used with dynamical conditions, based on the Reynolds and Weber numbers, relevant to microfluidics and commercial inkjet printing. Experimental measurements of advancing and receding static contact angles are used to calibrate a contact angle hysteresis model within a lattice Boltzmann framework, which is shown to capture the observed dynamics qualitatively and the final droplet configuration quantitatively. Our results show that no detectable mixing occurs during impact and coalescence of similar-sized droplets, but when the sessile droplet is sufficiently larger than the impacting droplet vortex ring generation can be observed. Finally we show how a gradient of wettability on the substrate can potentially enhance mixing.
Resumo:
Nowadays, all new wind turbine generators have to meet strict grid codes, especially riding through certain grid faults, such as a low voltage caused by grid short circuits. The Low-Voltage Ride Through (LVRT) capability has become a key issue in assessing the performance of wind turbine generators. The mediumspeed Brushless DFIG in combination with a simplified two-stage gearbox shows commercial promise as a replacement for conventional DFIGs due to its lower cost and higher reliability. Furthermore, the Brushless DFIG has significantly improved LVRT performance when compared with the DFIG due to its inherent design characteristics. In this paper, the authors propose a control strategy for the Brushless DFIG to improve its LVRT performance. The controller has been implemented on a prototype 250 kW Brushless DFIG and test results show that LVRT is possible without a need for any external protective hardware such as a crowbar.
Resumo:
The brushless doubly fed induction generator (BDFIG) has been proposed as a viable alternative in wind turbines to the commonly used doubly fed induction generator (DFIG). The BDFIG retains the benefits of the DFIG, i.e. variable speed operation with a partially rated converter, but without the use of brush gear and slip rings, thereby conferring enhanced reliability. As low voltage ride-through (LVRT) performance of the DFIG-based wind turbine is well understood, this paper aims to analyze LVRT behavior of the BDFIG-based wind turbine in a similar way. In order to achieve this goal, the equivalence between their two-axis model parameters is investigated. The variation of flux linkages, back-EMFs and currents of both types of generator are elaborated during three phase voltage dips. Moreover, the structural differences between the two generators, which lead to different equivalent parameters and hence different LVRT capabilities, are investigated. The analytical results are verified via time-domain simulations for medium size wind turbine generators as well as experimental results of a voltage dip on a prototype 250 kVA BDFIG. © 2014 Elsevier B.V.